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1 Introduction

Mean value theorems play an important role in analysis, being a useful tool in solving
numerous problems. Before we approach problems, we will recall some important theorems
that we will use in this paper.

Theorem 1.1. (Rolle’s theorem) Let f : [a, b] → R be a continuous function on [a, b],
differentiable on (a, b) and such that f(a) = f(b). Then, there is a point c ∈ (a, b) such that
f ′(c) = 0.

We can see its geometric meaning as follows:

“Rolle’s theorem” by Harp is licensed under CC BY-SA 2.5

Theorem 1.2. (Lagrange’s theorem) Let f : [a, b] → R be a continuous function on [a, b]
and differentiable on (a, b). Then, there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

The geometric meaning:
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Theorem 1.3. (Flett’s theorem) Let f : [a, b] → R be a continuous function on [a, b],
differentiable on (a, b), and such that f ′(a) = f ′(b). Then, there is η ∈ (a, b) such that

f ′(η) =
f(η)− f(a)

η − a
.

The geometric meaning:

The proof of these problems can be found in just about any Calculus textbook.

2 Main

In this section, we will solve some problems. Through solutions, we can find ideas or tech-
niques to solve other problems or maybe create new ones. All functions considered in this
section are real-valued.

We start with a simple problem.

Problem 2.1. Let f : [0, 1] → R be a continuous function on [0, 1], differentiable on (0, 1),
and such that f ′(x)− f(x) ≥ 0, ∀x ∈ [0, 1] and f(0) = 0. Prove that f(x) ≥ 0, ∀x ∈ [0, 1].

Proof. Let g(x) = e−xf(x), then g′(x) = e−x · (f ′(x) − f(x)) ≥ 0, ∀x ∈ [0, 1], hence g is
increasing on [0, 1]. Thus, g(x) ≥ g(0) = 0, ∀x ∈ [0, 1] and the conclusion follows.

Comment 2.2. Why did we let g(x) = e−xf(x), involving the integrant factor e−x?
Because looking at f ′(x) − f(x) ≥ 0, we consider the equality f ′(x) − f(x) = 0 ⇐⇒ f ′ =
f ⇐⇒ f ′

f
= 1; by integrating both sides, we get ln|f | = x+C, and choosing C=0, we obtain

|f | = ex ⇐⇒ e−x|f | = 1, this is why we let g(x) = e−xf(x).

Using this idea, we can solve more problems.

Problem 2.3. Let f : [0, 1] → R be a continuous function on [0, 1] satisfying
1∫
0

f(x)dx = 0.

Prove that there is c ∈ (0, 1) such that

f(c) =

c∫
0

f(x)dx.
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Proof.

Idea 2.4. From f(c) =
c∫
0

f(x)dx, we consider f(x) =
x∫
0

f(t)dt. Let F (x) =
x∫
0

f(t)dt. Then

f(x) =
x∫
0

f(t)dt ⇐⇒ F ′(x) = F (x) ⇐⇒ F ′(x)
F (x)

= 1; by integrating both sides we obtain

ln|F (x)| = x+ C, and choosing C=0, we get |F (x)| = ex ⇐⇒ e−x|F (x)| = 1.

So we will let g(x) = e−x
x∫
0

f(t)dt.

Returning to our problem:

Letting g(x) = e−x
x∫
0

f(t)dt, g is continuous on [0, 1] and differentiable on (0, 1). We have

g(0) = g(1) = 0, so by Rolle’s theorem there is c ∈ (0, 1) such that g′(c) = 0 ⇐⇒ f(c) =
c∫
0

f(x)dx.

Problem 2.5. Let f : [0, 1] → R be a continuous function [0, 1] satisfying
1∫
0

f(x)dx = 0.

Prove that there is c ∈ (0, 1) such that

(1− c)f(c) = c

c∫
0

f(x)dx.

Proof.

Idea 2.6. From (1− c)f(c) = c
c∫
0

f(x)dx, we consider (1− x)f(x) = x
x∫
0

f(t)dt. Let F (x) =

x∫
0

f(t)dt. Then (1−x)f(x) = x
x∫
0

f(x)dx⇐⇒ (1−x)F ′(x) = xF (x)⇐⇒ x
1−x = F ′(x)

F (x)
and by

integrating both sides, we get −ln|1−x|−x = ln|F (x)|+C; choosing C=0, −ln|1−x|−x =
ln|F (x)| ⇐⇒ e−ln|1−x|−x = |F (x)| ⇐⇒ (|1− x|)−1e−x = |F (x)| ⇐⇒ |1− x|ex|F (x)| = 1.

So we will let g(x) = ex(1− x)
x∫
0

f(t)dt.

Coming back to our problem:

Letting g(x) = ex(1 − x)
x∫
0

f(t)dt, g is continuous on [0, 1] and differentiable on (0, 1).

We have g(0) = g(1), and by Rolle’s theorem there is c ∈ (0, 1) such that g′(c) = 0 ⇐⇒

(1− c)f(c) = c
c∫
0

f(x)dx.

Problem 2.7. (D.Andrica) Let f be continuous on [a, b], differentiable on (a, b) and different
from 0 for all x ∈ (a, b). Prove that there exists c ∈ (a, b) such that

f ′(c)

f(c)
=

1

a− c
+

1

b− c

Proof.
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Idea 2.8. From f ′(c)
f(c)

= 1
a−c + 1

b−c , we consider f ′(x)
f(x)

= 1
a−x + 1

b−x , and by integrating both

sides we get ln|f(x)| = −ln|(a − x)(b − x)| + C. Choosing C = 0, we obtain ln|f(x)| =
−ln|(a− x)(b− x)| ⇐⇒ |f(x)||(a− x)(b− x)| = 1.
So we let g(x) = f(x)(a− x)(b− x).

Returning to our problem:
Let g(x) = f(x)(a − x)(b − x). Then g is continuous on [a, b], differentiable on (a, b) and

g(a) = g(b) = 0, so by Rolle’s theorem there is c ∈ (a, b) such that g′(c) = 0 ⇐⇒ f ′(c)
f(c)

=
1
a−c + 1

b−c

From the above, we now have a technique or idea to solve some problems related to mean
value theorems. I will give an exercise for readers.

Exercise 2.9. Let f : [0, 1] → R be a continuous function on [0, 1] satisfying
1∫
0

f(x)dx = 0.

Prove that there is c ∈ (0, 1) such that

1. f(c) = f ′(c)
c∫
0

f(x)dx, if f is differentiable on (0, 1).

2. f(c)
c

=
c∫
0

f(x)dx.

3. cf(c) =
1∫
c

f(x)dx.

Lemma 2.10. Let f be continuous on [0, a]. If
a∫
0

f(x)dx = 0, then there is c ∈ (0, a) such

that
c∫
0

xf(x)dx = 0.

Proof. Suppose that for all c ∈ (0, a),
c∫
0

xf(x)dx 6= 0. Because the function t →
t∫
0

xf(x)dx

is continuous on [0, a], we can assume that
c∫
0

xf(x)dx > 0 for all x ∈ (0, a).

Let H(t) =
t∫
0

f(x)dx, t ∈ [0, a].

Then
t∫
0

xf(x)dx = t
t∫
0

f(x)dx−
t∫
0

x∫
0

f(t)dtdx = t.H(t)−
t∫
0

H(x)dx > 0 for all t ∈ (0, a) (1).

In (1), letting t→ a, we get
a∫
0

H(x)dx ≤ 0 (2).

Now we consider the function:

g(t) =


t∫
0

H(x)dx

t
, t 6= 0

0, t = 0

4



where t ∈ [0, a].
g is continuous on [0, a] and differentiable on (0, a).

Clearly, we have g′(t) =
H(t).t−

t∫
0

H(x)dx

t2
> 0, for all t ∈ (0, a) (From (1)).

Applying Lagrange’s theorem for g on [0, a] we get there is c ∈ (0, a) such that:

g(a)−g(0) = g′(c).(a−0) > 0, hence g(a) > 0 which means that
a∫
0

H(x)dx > 0 (contradicting

(2)).

So we conclude that there is c ∈ (0, a) such that
c∫
0

xf(x)dx = 0.

Lemma 2.11. Let f be a real-valued function, continuous on [0, 1] satisfying
1∫
0

f(x)dx =
1∫
0

xf(x)dx. Prove that there is c ∈ (0, 1) such that

c∫
0

f(x)dx = 0

Proof. LetH(x) =
x∫
0

f(t)dt. We have
1∫
0

H(x)dx = 1.H(1)−0.H(0)−
1∫
0

xf(x)dx =
1∫
0

f(x)dx−
1∫
0

xf(x)dx = 0.

Let G(x) =
x∫
0

H(t)dt, G is continuous on [0, 1] and differentiable on (0, 1). Moreover G(0) =

G(1) = 0, and by Rolle’s theorem there is c ∈ (0, 1) such that G′(c) = 0 ⇐⇒
c∫
0

f(x)dx =

0

Problem 2.12. Let f : [0, 1] → R be continuous and
∫ 1

0
f(x)dx = 0.Prove that there is

c ∈ (0, 1) such that

c∫
0

(x+ x2)f(x)dx = c2f(c). (Duong V iet Thong,AMM, 2011)

Proof. Using Lemma2.10 there is c1 ∈ (0, 1) such that
c1∫
0

xf(x)dx = 0. Using Problem2.3

there is c2 ∈ (0, 1) such that c2f(c2) =
c2∫
0

xf(x)dx.

Let F (x) =
x∫
0

f(t).t[1− x+ t]dt. Then F ′(x) = xf(x)−
x∫
0

tf(t)dt. We have F ′(c2) = F ′(0) =

0 (Note: F ′(c2) = 0-proof above), so by Flett’s Theorem we get c ∈ (0, c2) ⊂ (0, 1) such that

F (c)− F (0) = c.F ′(c), meaning that
c∫
0

(x+ x2)f(x)dx = c2f(c).
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Comment 2.13.

1. If we change the hypothesis
∫ 1

0
f(x)dx = 0 to

1∫
0

f(x)dx =
1∫
0

xf(x)dx, then we will get

the same result //-Hint: Use Lemma2.11

2. Based on the lemma, we can create another problem:

Example 2.14. Let f : [0, 1] → R be continuous and
∫ 1

0
f(x)dx = 0. Then there

is c ∈ (0, 1) such that
c∫
0

xf(x)dx = 0. From here we can let G(x) =
x∫
0

tf(t)dt, and

so G′(x) = xf(x). We have G′(0) = 0, and using Flett’s theorem, we need to find
α ∈ (0, 1) such that G′(α) = 0. This is easy since we have G(c) = G(0) = 0, and by
Rolle’s theorem there is α ∈ (0, 1) such that G′(α) = 0.
Using Flett’s theorem there is η ∈ (0, α) such that G(η) − G(0) = ηG′(η) ⇐⇒
η∫
0

tf(t)dt = η2f(η)

We offer readers the following problem:

Problem 2.15.

Let f : [0, 1] → R be continuous satisfying
∫ 1

0
f(x)dx = 0 and f(0) = 0. Prove that

there is c ∈ (0, 1) such that

c2f(c) = 2

c∫
0

xf(x)dx.
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