1. Which of the following functions are differentiable at $x=0$?
(a) $f(x)=x^{\frac{1}{3}}$.
(b) $f(x)=x^{2}$ for rational x and $f(x)=0$ for irrational x.
(c) $f(x)=x \sin x \cos \frac{1}{x}$ for $x \neq 0$ and $f(0)=0$.
2. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable only at $x=1$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in \mathbb{R}$.
(a) If $f\left(x_{0}\right) \neq 0$, show that $|f|$ is also differentiable at x_{0}.
(b) If $f\left(x_{0}\right)=0$, give examples to show that $|f|$ may or may not be differentiable at x_{0}.
4. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in \mathbb{R}$. Define $h(x)=\max \{f(x), g(x)\} \forall x \in \mathbb{R}$. Show that h is differentiable at x_{0} if $f\left(x_{0}\right) \neq g\left(x_{0}\right)$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x=1, f(1)=1$ and $k \in \mathbb{N}$. Show that

$$
\lim _{n \rightarrow \infty} n\left(f\left(1+\frac{1}{n}\right)+f\left(1+\frac{2}{n}\right)+\ldots+f\left(1+\frac{k}{n}\right)-k\right)=\frac{k(k+1)}{2} f^{\prime}(1) .
$$

6. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable and $f(0)=0$ and $f(1)=1$. Show that the equation $f^{\prime}(x)=2 x$ has a solution on $(0,1)$.
7. Find the number of real solutions of the following equations.
(a) $2 x-\cos ^{2} x+\sqrt{7}=0$
(b) $x^{17}-e^{-x}+5 x+\cos x=0$
(c) $x^{18}+e^{-x}+5 x^{2}-2 \cos x=0$.
8. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{\prime \prime \prime}(x)$ exists for all $x \in[a, b]$. Suppose that $f(a)=f(b)=$ $f^{\prime}(a)=f^{\prime}(b)=0$. Show that the equation $f^{\prime \prime \prime}(x)=0$ has a solution.
9. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $a_{1}+a_{2}+\ldots+a_{n}=0$. Show that the polynomial $q(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots+n a_{n} x^{n-1}$ has at least one real root.
10. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions. Suppose that $f^{\prime}(x) g(x) \neq f(x) g^{\prime}(x)$ for any $x \in \mathbb{R}$. Show that between any two real solutions of $f(x)=0$, there is at least one real solution of $g(x)=0$.
11. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable function such that $f(0)=0$ and $f(x)>0$ for all $x \in(0,1]$. Show that there exists $c \in(0,1)$ such that $\frac{f^{\prime}(1-c)}{f(1-c)}=\frac{2 f^{\prime}(c)}{f(c)}$.
12. Let $P(x)$ be a polynomial of degree $n, n>1$ and $P\left(x_{0}\right)=0$ for some $x_{0} \in \mathbb{R}$.
(a) Show that $P(x)=\left(x-x_{0}\right) Q(x)$ where $Q(x)$ is a polynomial of degree $n-1$.
(b) Show that $P^{\prime}\left(x_{0}\right)=0$ if and only if $P(x)=\left(x-x_{0}\right)^{2} R(x)$ where $R(x)$ is a polynomial of degree $n-2$.
(c) Show that if all roots of $P(x)$ are real then all roots of $P^{\prime}(x)$ are also real.
13. $\left(^{*}\right)$ Let $f:(0, \infty) \rightarrow \mathbb{R}$ satisfy $f(x y)=f(x)+f(y)$ for all $x, y \in(0, \infty)$. Suppose that f is differentiable at $x=1$. Show that f is differentiable at every $x \in(0, \infty)$ and $f^{\prime}(x)=\frac{1}{x} f^{\prime}(1)$ for every $x \in(0, \infty)$.
14. (a) Note that $\lim _{x \rightarrow 0} \frac{x^{\frac{1}{3}}-0}{x-0}$ does not exist.
(b) Observe that $\left|\frac{f(x)-0}{x-0}\right| \leq|x| \rightarrow 0$ as $x \rightarrow 0$. Therefore f is differentiable at $x=0$.
(c) Since $\left|\frac{x \sin x \cos \frac{1}{x}}{x}\right| \leq|\sin x| \rightarrow 0$, as $x \rightarrow 0, f$ is differentiable at $x=0$.
15. Define $f(x)=(x-1)^{2}$ for rational x and $f(x)=0$ for irrational x.
16. (a) If $f\left(x_{0}\right)>0$, then $|f(x)|=f(x)$ in a neighborhood of x_{0}.
(b) Consider the examples: (i) $f(x)=x \quad$ (ii) $g(x)=x|x|$.
17. If $f\left(x_{0}\right)>g\left(x_{0}\right)$ then in a neighborhood of $x_{0}, h(x)=f(x)$.
18. The given limit is $\lim _{n \rightarrow \infty}\left(\frac{f\left(1+\frac{1}{n}\right)-f(1)}{\frac{1}{n}}+2 \frac{f\left(1+\frac{2}{n}\right)-f(1)}{\frac{2}{n}}+\ldots+k \frac{f\left(1+\frac{k}{n}\right)-f(1)}{\frac{k}{n}}\right)$.
19. Apply Rolle's Theorem for $g(x)=f(x)-x^{2}$ on $[0,1]$.
20. (a) Let $f(x)=2 x-\cos ^{2} x+\sqrt{7}$. Since $f^{\prime}(x)$ has no real root, by Rolle's theorem $f(x)$ has at most one real root. Now $f(0)>0$ and $f(-2)<0$. So by IVP there exists a real solution for $f(x)=0$. Therefore $f(x)=0$ has exactly one real solution.
(b) Let $f(x)=x^{17}-e^{-x}+5 x+\cos x$. Observe that $f^{\prime}(x)>0 \forall x \in \mathbb{R}, f(2)>0$ and $f(-2)<0$. By IVP and Rolle's theorem $f(x)=0$ has exactly one real solution.
(c) Let $f(x)=x^{18}+e^{-x}+5 x^{2}-2 \cos x$. Since $f^{\prime \prime}(x)>0 \forall x \in \mathbb{R}, f^{\prime}(x)$ has at most one real root. Note that $f(0)<0, f(2)>0$ and $f(-2)>0$. Therefore by IVP and Rolle's theorem $f(x)=0$ has exactly two real solutions.
21. By Rolle's theorem there exists $d \in(a, b)$ such that $f^{\prime}(d)=0$. Again, by applying Rolle's theorem for $f^{\prime \prime}$, there exists $c_{1} \in(a, d)$ and $c_{2} \in(d, b)$ such that $f^{\prime \prime}\left(c_{1}\right)=0$ and $f^{\prime \prime}\left(c_{2}\right)=0$. Apply Rolle's Theorem for $f^{\prime \prime}$ on $\left[c_{1}, c_{2}\right]$.
22. Let $p(x)=a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$. Then $p(0)=0$ and $p(1)=0$. By Rolle's theorem, $p^{\prime}(x)=q(x)$ has a real root.
23. Let $f(a)=f(b)=0$ and $a<b$. Since $f^{\prime}(a) g(a) \neq f(a) g^{\prime}(a), g(a) \neq 0$. Similarly $g(b) \neq 0$. If $g(x)=0$ has no real solution then $h(x)=\frac{f(x)}{g(x)}$ is well defined and $h(a)=h(b)=0$. By Rolle's theorem, there exists $c \in(a, b)$ such that $h^{\prime}(c)=0$. That is $f^{\prime}(c) g(c)=f(c) g^{\prime}(c)$ which is a contradiction.
24. Let $g(x)=(f(x))^{2} f(1-x)$. Then $g(0)=g(1)=0$. Apply Rolle's theorem for g on $[0,1]$.
25. (a) Use $P(x)=P(x)-P\left(x_{0}\right)$ and $x^{k}-x_{0}^{k}=\left(x-x_{0}\right)\left(x^{k-1}+x^{k-2} x_{0}+\ldots+x x_{0}^{k-2}+x_{0}^{k-1}\right)$.
(b) Suppose $P(x)=\left(x-x_{0}\right) Q(x)$. Then $P^{\prime}(x)=Q(x)+\left(x-x_{0}\right) Q^{\prime}(x)$. If $P^{\prime}\left(x_{0}\right)=0$ then $Q\left(x_{0}\right)=0$. Therefore $Q(x)=\left(x-x_{0}\right) R(x)$ for a polynomial $R(x)$ of degree $n-2$.
(c) First observe that if x_{0} is a zero of $P(x)$ of order k then it is a zero of $P^{\prime}(x)$ of order $k-1$. Use Rolle's theorem that between any two real zeros of $P(x)$ there is one real zero of $P^{\prime}(x)$.
26. Observe that $f(1)=0, f\left(\frac{1}{x}\right)=-f(x)$ and $f\left(\frac{x}{y}\right)=f(x)-f(y)$. Now

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} f\left(\frac{x+h}{x}\right)=\lim _{k \rightarrow 0} \frac{f(1+k)}{k x}=\lim _{k \rightarrow 0} \frac{1}{x} \frac{f(1+k)-f(1)}{k}=\frac{1}{x} f^{\prime}(1) .
\end{aligned}
$$

