Recall the
Theorem on Local Extrema
If $f(c)$ is a local extremum, then either f is not differentiable at c or $f^{\prime}(c)=0$.

Recall the
Theorem on Local Extrema
If $f(c)$ is a local extremum, then either f is not differentiable at c or $f^{\prime}(c)=0$.
We will use this to prove

Rolle's Theorem

Let $a<b$. If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) and $f(a)=f(b)$, then there is a c in (a, b) with $f^{\prime}(c)=0$. That is, under these hypotheses, f has a horizontal tangent somewhere between a and b.

Recall the

Theorem on Local Extrema

If $f(c)$ is a local extremum, then either f is not differentiable at c or $f^{\prime}(c)=0$.
We will use this to prove

Rolle's Theorem

Let $a<b$. If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) and $f(a)=f(b)$, then there is a c in (a, b) with $f^{\prime}(c)=0$. That is, under these hypotheses, f has a horizontal tangent somewhere between a and b.

Rolle's Theorem, like the Theorem on Local Extrema, ends with $f^{\prime}(c)=0$. The proof of Rolle's Theorem is a matter of examining cases and applying the Theorem on Local Extrema,

Proof of Rolle's Theorem

We seek a c in (a, b) with $f^{\prime}(c)=0$. That is, we wish to show that f has a horizontal tangent somewhere between a and b. Keep in mind that $f(a)=f(b)$.

Proof of Rolle's Theorem

We seek a c in (a, b) with $f^{\prime}(c)=0$. That is, we wish to show that f has a horizontal tangent somewhere between a and b. Keep in mind that $f(a)=f(b)$.

Since f is continuous on the closed interval $[a, b]$, the Extreme Value Theorem says that f has a maximum value $f(M)$ and a minimum value $f(m)$ on the closed interval $[a, b]$.

Proof of Rolle's Theorem

We seek a c in (a, b) with $f^{\prime}(c)=0$. That is, we wish to show that f has a horizontal tangent somewhere between a and b. Keep in mind that $f(a)=f(b)$.

Since f is continuous on the closed interval $[a, b]$, the Extreme Value Theorem says that f has a maximum value $f(M)$ and a minimum value $f(m)$ on the closed interval $[a, b]$. Either $f(M)=f(m)$ or $f(M) \neq f(m)$.

Proof of Rolle's Theorem

We seek a c in (a, b) with $f^{\prime}(c)=0$. That is, we wish to show that f has a horizontal tangent somewhere between a and b. Keep in mind that $f(a)=f(b)$.

Since f is continuous on the closed interval $[a, b]$, the Extreme Value Theorem says that f has a maximum value $f(M)$ and a minimum value $f(m)$ on the closed interval $[a, b]$. Either $f(M)=f(m)$ or $f(M) \neq f(m)$.
First we suppose the maximum value $f(M)=f(m)$, the minimum value. So all values of f on $[a, b]$ are equal, and f is constant on $[a, b]$.

Proof of Rolle's Theorem

We seek a c in (a, b) with $f^{\prime}(c)=0$. That is, we wish to show that f has a horizontal tangent somewhere between a and b. Keep in mind that $f(a)=f(b)$.

Since f is continuous on the closed interval $[a, b]$, the Extreme Value Theorem says that f has a maximum value $f(M)$ and a minimum value $f(m)$ on the closed interval $[a, b]$. Either $f(M)=f(m)$ or $f(M) \neq f(m)$.
First we suppose the maximum value $f(M)=f(m)$, the minimum value. So all values of f on $[a, b]$ are equal, and f is constant on $[a, b]$. Then $f^{\prime}(x)=0$ for all x in (a, b). So one may take c to be anything in (a, b); for example, $c=\frac{a+b}{2}$ would suffice.

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$.

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$.

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$. But M is in $[a, b]$ and not at the end points.

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$. But M is in $[a, b]$ and not at the end points. Thus M is in the open interval (a, b).

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$. But M is in $[a, b]$ and not at the end points. Thus M is in the open
 interval $(a, b) . f(M) \geq f(x)$ for all x in the closed interval $[a, b]$ which contains the open interval (a, b).

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$. But M is in $[a, b]$ and not at the end points. Thus M is in the open
 interval $(a, b) . f(M) \geq f(x)$ for all x in the closed interval $[a, b]$ which contains the open interval (a, b). So we also have $f(M) \geq f(x)$ for all x in the open interval (a, b).

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$. But M is in $[a, b]$ and not at the end points. Thus M is in the open
 interval $(a, b) . f(M) \geq f(x)$ for all x in the closed interval $[a, b]$ which contains the open interval (a, b). So we also have $f(M) \geq f(x)$ for all x in the open interval (a, b). This means that $f(M)$ is a local maximum.

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$. But M is in $[a, b]$ and not at the end points. Thus M is in the open
 interval $(a, b) . f(M) \geq f(x)$ for all x in the closed interval $[a, b]$ which contains the open interval (a, b). So we also have $f(M) \geq f(x)$ for all x in the open interval (a, b). This means that $f(M)$ is a local maximum. Since f is differentiable on (a, b), the Theorem on Local Extrema says $f^{\prime}(M)=0$.

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$. But M is in $[a, b]$ and not at the end points. Thus M is in the open
 interval $(a, b) . f(M) \geq f(x)$ for all x in the closed interval $[a, b]$ which contains the open interval (a, b). So we also have $f(M) \geq f(x)$ for all x in the open interval (a, b). This means that $f(M)$ is a local maximum. Since f is differentiable on (a, b), the Theorem on Local Extrema says $f^{\prime}(M)=0$. So we take $c=M$, and we are done with this case.

Proof of Rolle's Theorem

Now we suppose $f(M) \neq f(m)$. So at least one of $f(M)$ and $f(m)$ is not equal to the value $f(a)=f(b)$.
We first consider the case where the maximum value $f(M) \neq f(a)=f(b)$. So $a \neq M \neq b$. But M is in $[a, b]$ and not at the end points. Thus M is in the open
 interval $(a, b) . f(M) \geq f(x)$ for all x in the closed interval $[a, b]$ which contains the open interval (a, b). So we also have $f(M) \geq f(x)$ for all x in the open interval (a, b). This means that $f(M)$ is a local maximum. Since f is differentiable on (a, b), the Theorem on Local Extrema says $f^{\prime}(M)=0$. So we take $c=M$, and we are done with this case.
The case with the minimum value $f(m) \neq f(a)=f(b)$ is similar and left for you to do.
So we are done with the proof of Rolle's Theorem.
joint application of Rolle's Theorem and the Intermediate Value Theorem

We show that $x^{5}+4 x=1$ has exactly one solution.

joint application of Rolle's Theorem and the Intermediate

 Value TheoremWe show that $x^{5}+4 x=1$ has exactly one solution. Let $f(x)=x^{5}+4 x$. Since f is a polynomial, f is continuous everywhere.

joint application of Rolle's Theorem and the Intermediate

 Value TheoremWe show that $x^{5}+4 x=1$ has exactly one solution. Let $f(x)=x^{5}+4 x$. Since f is a polynomial, f is continuous everywhere. $f^{\prime}(x)=5 x^{4}+4 \geq 0+4=4>0$ for all x. So $f^{\prime}(x)$ is never 0 .

joint application of Rolle's Theorem and the Intermediate Value Theorem

We show that $x^{5}+4 x=1$ has exactly one solution. Let $f(x)=x^{5}+4 x$. Since f is a polynomial, f is continuous everywhere. $f^{\prime}(x)=5 x^{4}+4 \geq 0+4=4>0$ for all x. So $f^{\prime}(x)$ is never 0 . So by Rolle's Theorem, no equation of the form $f(x)=C$ can have 2 or more solutions.

joint application of Rolle's Theorem and the Intermediate Value Theorem

We show that $x^{5}+4 x=1$ has exactly one solution. Let $f(x)=x^{5}+4 x$. Since f is a polynomial, f is continuous everywhere. $f^{\prime}(x)=5 x^{4}+4 \geq 0+4=4>0$ for all x. So $f^{\prime}(x)$ is never 0 . So by Rolle's Theorem, no equation of the form $f(x)=C$ can have 2 or more solutions. In particular $x^{5}+4 x=1$ has at most one solution.

joint application of Rolle's Theorem and the Intermediate Value Theorem

We show that $x^{5}+4 x=1$ has exactly one solution. Let $f(x)=x^{5}+4 x$. Since f is a polynomial, f is continuous everywhere. $f^{\prime}(x)=5 x^{4}+4 \geq 0+4=4>0$ for all x. So $f^{\prime}(x)$ is never 0 . So by Rolle's Theorem, no equation of the form $f(x)=C$ can have 2 or more solutions. In particular $x^{5}+4 x=1$ has at most one solution.

$$
f(0)=0^{5}+4 \cdot 0=0<1<5=1+4=f(1) .
$$

joint application of Rolle's Theorem and the Intermediate Value Theorem

We show that $x^{5}+4 x=1$ has exactly one solution. Let $f(x)=x^{5}+4 x$. Since f is a polynomial, f is continuous everywhere. $f^{\prime}(x)=5 x^{4}+4 \geq 0+4=4>0$ for all x. So $f^{\prime}(x)$ is never 0 . So by Rolle's Theorem, no equation of the form $f(x)=C$ can have 2 or more solutions. In particular $x^{5}+4 x=1$ has at most one solution.
$f(0)=0^{5}+4 \cdot 0=0<1<5=1+4=f(1)$. Since f is
continuous everywhere,

joint application of Rolle's Theorem and the Intermediate Value Theorem

We show that $x^{5}+4 x=1$ has exactly one solution. Let $f(x)=x^{5}+4 x$. Since f is a polynomial, f is continuous everywhere. $f^{\prime}(x)=5 x^{4}+4 \geq 0+4=4>0$ for all x. So $f^{\prime}(x)$ is never 0 . So by Rolle's Theorem, no equation of the form $f(x)=C$ can have 2 or more solutions. In particular $x^{5}+4 x=1$ has at most one solution.
$f(0)=0^{5}+4 \cdot 0=0<1<5=1+4=f(1)$. Since f is continuous everywhere, by the Intermediate Value Theorem, $f(x)=1$ has a solution in the interval $[0,1]$.

joint application of Rolle's Theorem and the Intermediate Value Theorem

We show that $x^{5}+4 x=1$ has exactly one solution. Let $f(x)=x^{5}+4 x$. Since f is a polynomial, f is continuous everywhere. $f^{\prime}(x)=5 x^{4}+4 \geq 0+4=4>0$ for all x. So $f^{\prime}(x)$ is never 0 . So by Rolle's Theorem, no equation of the form $f(x)=C$ can have 2 or more solutions. In particular $x^{5}+4 x=1$ has at most one solution.
$f(0)=0^{5}+4 \cdot 0=0<1<5=1+4=f(1)$. Since f is continuous everywhere, by the Intermediate Value Theorem, $f(x)=1$ has a solution in the interval $[0,1]$.
Together these reults say $x^{5}+4 x=1$ has exactly one solution, and it lies in $[0,1]$.

The traditional name of the next theorem is the Mean Value Theorem. A more descriptive name would be Average Slope Theorem.

Mean Value Theorem
Let $a<b$. If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there is a c in (a, b) with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

The traditional name of the next theorem is the Mean Value Theorem. A more descriptive name would be Average Slope Theorem.

Mean Value Theorem

Let $a<b$. If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there is a c in (a, b) with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

That is, under appropriate smoothness conditions the slope of the curve at some point between a and b is the same as the slope of the line joining $\langle a, f(a)\rangle$ to $\langle b, f(b)\rangle$. The figure to the right shows two such points, each labeled c.

The traditional name of the next theorem is the Mean Value Theorem. A more descriptive name would be Average Slope Theorem.

Mean Value Theorem

Let $a<b$. If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there is a c in (a, b) with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

That is, under appropriate smoothness conditions the slope of the curve at some point between a and b is the same as the slope of the line joining $\langle a, f(a)\rangle$ to $\langle b, f(b)\rangle$. The figure to the right shows two such points, each labeled c.

The Mean Value Theorem generalizes Rolle's Theorem.

Let's look again at the two theorems together.
Rolle's Theorem
Let $a<b$. If f is continuous on $[a, b]$ and differentiable on (a, b) and $f(a)=f(b)$, then there is a in (a, b) with $f^{\prime}(c)=0$.

Mean Value Theorem
Let $a<b$. If f is continuous on $[a, b]$ and differentiable on (a, b), then there is a c in (a, b) with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Let's look again at the two theorems together.

Rolle's Theorem

Let $a<b$. If f is continuous on $[a, b]$ and differentiable on (a, b) and $f(a)=f(b)$, then there is a in (a, b) with $f^{\prime}(c)=0$.

Mean Value Theorem

Let $a<b$. If f is continuous on $[a, b]$ and differentiable on (a, b), then there is a c in (a, b) with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

The proof of the Mean Value Theorem is accomplished by finding a way to apply Rolle's Theorem. One considers the line joining the points $\langle a, f(a)\rangle$ and $\langle b, f(b)\rangle$. The difference between f and that line is a function that turns out to satisfy the hypotheses of Rolle's Theorem, which then yields the desired result.

Proof of the Mean Value Theorem

Suppose f satisfies the hypotheses of the Mean Value Theorem.

Proof of the Mean Value Theorem

Suppose f satisfies the hypotheses of the Mean Value Theorem.
We let g
be the difference between f and the line joining the points $\langle a, f(a)\rangle$ and $\langle b, f(b)\rangle$.

Proof of the Mean Value Theorem

Suppose f satisfies the hypotheses of the Mean Value Theorem. We let g
be the difference between f and the line joining the points $\langle a, f(a)\rangle$ and $\langle b, f(b)\rangle$. That is, $g(x)$ is the height of the vertical green line in the figure to the right.

Proof of the Mean Value Theorem

Suppose f satisfies the hypotheses of the Mean Value Theorem.
We let g
be the difference between f and the line joining the points $\langle a, f(a)\rangle$ and $\langle b, f(b)\rangle$. That is, $g(x)$ is the height of the vertical green line in the figure to the right.

The line joining the points
$\langle a, f(a)\rangle$ and $\langle b, f(b)\rangle$ has equation

$$
y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

Proof of the Mean Value Theorem

So

$$
g(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] .
$$

g is the difference of two continuous functions. So g is continuous on $[a, b]$.

Proof of the Mean Value Theorem

So

$$
g(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] .
$$

g is the difference of two continuous functions. So g is continuous on $[a, b]$.
g is the difference of two differentiable functions. So g is differentiable on (a, b).

Proof of the Mean Value Theorem

So

$$
g(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] .
$$

g is the difference of two continuous functions. So g is continuous on $[a, b]$.
g is the difference of two differentiable functions. So g is differentiable on (a, b). Moreover, the derivative of g is the difference between the derivative of f and the derivative (slope) of the line.

Proof of the Mean Value Theorem

So

$$
g(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] .
$$

g is the difference of two continuous functions. So g is continuous on $[a, b]$.
g is the difference of two differentiable functions. So g is differentiable on (a, b). Moreover, the derivative of g is the difference between the derivative of f and the derivative (slope) of the line. That is,

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}
$$

Proof of the Mean Value Theorem

Both f and the line go through the points $\langle a, f(a)\rangle$ and $\langle b, f(b)\rangle$.

Proof of the Mean Value Theorem

Both f and the line go through the points $\langle a, f(a)\rangle$ and $\langle b, f(b)\rangle$. So the difference between them is 0 at a and at b.

Proof of the Mean Value Theorem

Both f and the line go through the points $\langle a, f(a)\rangle$ and $\langle b, f(b)\rangle$. So the difference between them is 0 at a and at b. Indeed,

$$
g(a)=f(a)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(a-a)\right]=f(a)-[f(a)+0]=0
$$

and

$$
\begin{aligned}
g(b) & =f(b)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(b-a)\right] \\
& =f(b)-[f(a)+f(b)-f(a)]=0
\end{aligned}
$$

Proof of the Mean Value Theorem

So Rolle's Theorem applies to g.

Proof of the Mean Value Theorem

So Rolle's Theorem applies to g. So there is a c in the open interval (a, b) with $g^{\prime}(c)=0$.

Proof of the Mean Value Theorem

So Rolle's Theorem applies to g. So there is a c in the open interval (a, b) with $g^{\prime}(c)=0$. Above we calculated that

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}
$$

Proof of the Mean Value Theorem

So Rolle's Theorem applies to g. So there is a c in the open interval (a, b) with $g^{\prime}(c)=0$. Above we calculated that

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}
$$

Using that we have

$$
0=g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

which is what we needed to prove.

Example

We illustrate The Mean Value Theorem by considering $f(x)=x^{3}$ on the interval [1,3].

Example

We illustrate The Mean Value Theorem by considering $f(x)=x^{3}$ on the interval [1,3].
f is a polynomial and so continuous everywhere. For any x we see that $f^{\prime}(x)=3 x^{2}$. So f is continuous on $[1,3]$ and differentiable on $(1,3)$. So the Mean Value theorem applies to f and $[1,3]$.

Example

We illustrate The Mean Value Theorem by considering $f(x)=x^{3}$ on the interval [1,3].
f is a polynomial and so continuous everywhere. For any x we see that $f^{\prime}(x)=3 x^{2}$. So f is continuous on [1,3] and differentiable on $(1,3)$. So the Mean Value theorem applies to f and $[1,3]$.

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(3)-f(1)}{3-1}=\frac{27-1}{2}=13
$$

$f^{\prime}(c)=3 c^{2}$. So we seek a c in $[1,3]$ with $3 c^{2}=13$.

Example

$$
3 c^{2}=13 \text { iff } c^{2}=\frac{13}{3} \text { iff } c= \pm \sqrt{\frac{13}{3}} .
$$

Example

$$
3 c^{2}=13 \text { iff } c^{2}=\frac{13}{3} \text { iff } c= \pm \sqrt{\frac{13}{3}}
$$

$-\sqrt{\frac{13}{3}}$ is not in the interval $(1,3)$, but $\sqrt{\frac{13}{3}}$ is a little bigger than
$\sqrt{\frac{12}{3}}=\sqrt{4}=2$. So $\sqrt{\frac{13}{3}}$ is in the interval $(1,3)$.

Example

$3 c^{2}=13$ iff $c^{2}=\frac{13}{3}$ iff $c= \pm \sqrt{\frac{13}{3}}$.
$-\sqrt{\frac{13}{3}}$ is not in the interval $(1,3)$, but $\sqrt{\frac{13}{3}}$ is a little bigger than
$\sqrt{\frac{12}{3}}=\sqrt{4}=2$. So $\sqrt{\frac{13}{3}}$ is in the interval $(1,3)$.
So $c=\sqrt{\frac{13}{3}}$ is in the interval $(1,3)$, and

$$
f^{\prime}(c)=f^{\prime}\left(\sqrt{\frac{13}{3}}\right)=13=\frac{f(3)-f(1)}{3-1}=\frac{f(b)-f(a)}{b-a}
$$

