
Recall the

Theorem on Local Extrema
If f (c) is a local extremum, then either f is not differentiable at c
or f ′(c) = 0.

We will use this to prove

Rolle’s Theorem
Let a < b. If f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b) and f (a) = f (b), then
there is a c in (a, b) with f ′(c) = 0. That is, under these
hypotheses, f has a horizontal tangent somewhere between a and
b.

Rolle’s Theorem, like the Theorem on Local Extrema, ends with
f ′(c) = 0. The proof of Rolle’s Theorem is a matter of examining
cases and applying the Theorem on Local Extrema,
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Proof of Rolle’s Theorem

We seek a c in (a, b) with f ′(c) = 0. That is, we wish to show
that f has a horizontal tangent somewhere between a and b. Keep
in mind that f (a) = f (b).

Since f is continuous on the closed interval [a, b], the Extreme
Value Theorem says that f has a maximum value f (M) and a
minimum value f (m) on the closed interval [a, b]. Either
f (M) = f (m) or f (M) 6= f (m).
First we suppose the maximum value f (M) = f (m), the minimum
value. So all values of f on [a, b] are equal, and f is constant on
[a, b]. Then f ′(x) = 0 for all x in (a, b). So one may take c to be
anything in (a, b); for example, c = a+b

2 would suffice.
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Proof of Rolle’s Theorem

Now we suppose f (M) 6= f (m). So at least one of f (M) and f (m)
is not equal to the value f (a) = f (b).

We first consider the case where the
maximum value f (M) 6= f (a) = f (b). So
a 6= M 6= b. But M is in [a, b] and not
at the end points. Thus M is in the open
interval (a, b). f (M) ≥ f (x) for all x in
the closed interval [a, b] which contains
the open interval (a, b). So we also have f (M) ≥ f (x) for all x in
the open interval (a, b). This means that f (M) is a local
maximum. Since f is differentiable on (a, b), the Theorem on
Local Extrema says f ′(M) = 0. So we take c = M, and we are
done with this case.
The case with the minimum value f (m) 6= f (a) = f (b) is similar
and left for you to do.
So we are done with the proof of Rolle’s Theorem.
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joint application of Rolle’s Theorem and the Intermediate
Value Theorem

We show that x5 + 4x = 1 has exactly one solution.

Let
f (x) = x5 + 4x . Since f is a polynomial, f is continuous
everywhere. f ′(x) = 5x4 + 4 ≥ 0 + 4 = 4 > 0 for all x . So f ′(x) is
never 0. So by Rolle’s Theorem, no equation of the form f (x) = C
can have 2 or more solutions. In particular x5 + 4x = 1 has at
most one solution.
f (0) = 05 + 4 · 0 = 0 < 1 < 5 = 1 + 4 = f (1). Since f is
continuous everywhere, by the Intermediate Value Theorem,
f (x) = 1 has a solution in the interval [0, 1].
Together these reults say x5 + 4x = 1 has exactly one solution,
and it lies in [0, 1].
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The traditional name of the next theorem is the Mean Value
Theorem. A more descriptive name would be Average Slope
Theorem.

Mean Value Theorem
Let a < b. If f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b), then there is a c in (a, b)
with

f ′(c) =
f (b)− f (a)

b − a
.

x
a c c b

y

That is, under appropriate smoothness
conditions the slope of the curve at
some point between a and b is the same
as the slope of the line joining 〈a, f (a)〉
to 〈b, f (b)〉. The figure to the right
shows two such points, each labeled c .

The Mean Value Theorem
generalizes Rolle’s Theorem.
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Let’s look again at the two theorems together.

Rolle’s Theorem
Let a < b. If f is continuous on [a, b] and differentiable on (a, b)
and f (a) = f (b), then there is a c in (a, b) with f ′(c) = 0.

Mean Value Theorem
Let a < b. If f is continuous on [a, b] and differentiable on (a, b),
then there is a c in (a, b) with

f ′(c) =
f (b)− f (a)

b − a
.

The proof of the Mean Value Theorem is accomplished by finding
a way to apply Rolle’s Theorem. One considers the line joining the
points 〈a, f (a)〉 and 〈b, f (b)〉. The difference between f and that
line is a function that turns out to satisfy the hypotheses of Rolle’s
Theorem, which then yields the desired result.
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Proof of the Mean Value Theorem

Suppose f satisfies the
hypotheses of the Mean Value Theorem.

We let g
be the difference between f and the line
joining the points 〈a, f (a)〉 and 〈b, f (b)〉.
That is, g(x) is the height of the vertical
green line in the figure to the right.

The line joining the points
〈a, f (a)〉 and 〈b, f (b)〉 has equation

y = f (a) +
f (b)− f (a)

b − a
(x − a).
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Proof of the Mean Value Theorem

So

g(x) = f (x)−
[

f (a) +
f (b)− f (a)

b − a
(x − a)

]
.

g is the difference of two continuous functions. So g is continuous
on [a, b].

g is the difference of two differentiable functions. So g is
differentiable on (a, b). Moreover, the derivative of g is the
difference between the derivative of f and the derivative (slope) of
the line. That is,

g ′(x) = f ′(x)− f (b)− f (a)

b − a
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Proof of the Mean Value Theorem

Both f and the line go through the points 〈a, f (a)〉 and 〈b, f (b)〉.

So the difference between them is 0 at a and at b. Indeed,

g(a) = f (a)−
[

f (a) +
f (b)− f (a)

b − a
(a− a)

]
= f (a)− [f (a) + 0] = 0,

and

g(b) = f (b)−
[

f (a) +
f (b)− f (a)

b − a
(b − a)

]
= f (b)− [f (a) + f (b)− f (a)] = 0.
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Proof of the Mean Value Theorem

So Rolle’s Theorem applies to g .

So there is a c in the open
interval (a, b) with g ′(c) = 0. Above we calculated that

g ′(x) = f ′(x)− f (b)− f (a)

b − a
.

Using that we have

0 = g ′(c) = f ′(c)− f (b)− f (a)

b − a

which is what we needed to prove.
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Example

We illustrate The Mean Value Theorem by considering f (x) = x3

on the interval [1, 3].

f is a polynomial and so continuous everywhere. For any x we see
that f ′(x) = 3x2. So f is continuous on [1, 3] and differentiable on
(1, 3). So the Mean Value theorem applies to f and [1, 3].

f (b)− f (a)

b − a
=

f (3)− f (1)

3− 1
=

27− 1

2
= 13.

f ′(c) = 3c2. So we seek a c in [1, 3] with 3c2 = 13.
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