
 

CHAPTER-2 

Solutions of Linear Partial Differential 

Equations of Order One  

2.1 Introduction 

Partial differential equations of order one arise in many 

practical problems in science and engineering, when the number of 

independent variables in the problem under discussion is two or 

more. The most general form of a partial differential equation of 

order one in two independent variables x and y and a dependent 

variable z is 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0, where 𝑝 ≡
𝜕𝑧

𝜕𝑥
  and   𝑞 ≡

𝜕𝑧

𝜕𝑦
 . In this 

chapter, we shall consider only linear partial differential equations 

of order one. 

2.2 Linear Partial Differential Equation of Order One 

A partial differential equation 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 of order one 

is said to be linear, if it is of first degree in p and q. There is no 

restriction on the degree of the dependent variable z. For example, 

the equations  

                 𝑥𝑝 + 𝑦𝑞 = 𝑥𝑦    and    𝑥2𝑝 + 𝑦2𝑞 = 𝑧2          …(1) 

are linear partial differential equations of order one. 

The general form of a linear partial differential equation of 

order one is  

                              𝑃𝑝 + 𝑄𝑞 = 𝑅                                       …(2) 

where P, Q and R are functions of x, y and z. 
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If P = 0 or Q = 0 in (2), then the equation can be solved easily. 

For example, the equation 
𝜕𝑧

𝜕𝑦
= 3𝑥 + 4𝑦 has its solution 𝑧 = 3𝑥𝑦 +

2𝑦2 + 𝑓(𝑥), where 𝑓 is an arbitrary function of x. Similarly, the 

equation 
𝜕𝑧

𝜕𝑥
= 2𝑥 − 3𝑦 has its solution 𝑧 = 𝑥2 − 3𝑥𝑦 + 𝑔(𝑦), 

where 𝑔 is an arbitrary function of y. 

2.3 Classification of Partial Differential Equations of Order One 

The partial differential equations of order one may be 

classified as under: 

2.3.1 Quasi-linear Partial Differential Equation  

A partial differential equation of order one of the form 

           𝑃(𝑥, 𝑦, 𝑧)
𝜕𝑧

𝜕𝑥
+ 𝑄(𝑥, 𝑦, 𝑧)

𝜕𝑧

𝜕𝑦
= 𝑅(𝑥, 𝑦, 𝑧)               …(1) 

is called a quasi-linear partial differential equation of order one, 

if the degree of partial derivatives 
𝜕𝑧

𝜕𝑥
 and 

𝜕𝑧

𝜕𝑦
 appearing in the 

equation is one and the coefficients P, Q and R depend upon x, y 

and z, e.g. the partial differential equations 𝑧 
𝜕𝑧

𝜕𝑥
+

𝜕𝑧

𝜕𝑦
= 0 and 

𝑦
𝜕𝑧

𝜕𝑥
+ 𝑥𝑧

𝜕𝑧

𝜕𝑦
= 𝑥𝑦𝑧 are quasi-linear partial differential equations of 

order one. 

2.3.2 Almost-linear Partial Differential Equation 

A partial differential equation of order one of the form 

                 𝑃(𝑥, 𝑦)
𝜕𝑧

𝜕𝑥
+ 𝑄(𝑥, 𝑦)

𝜕𝑧

𝜕𝑦
= 𝑅(𝑥, 𝑦, 𝑧)                         …(2) 

is called an almost linear partial differential equation of order 

one, if the coefficients P and Q are functions of the independent 

variables x and y only and R is a function of x, y and z; e.g. the 
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partial differential equations 𝑥
𝜕𝑧

𝜕𝑥
+ 𝑦

𝜕𝑧

𝜕𝑦
= 𝑧2 and 𝑦

𝜕𝑧

𝜕𝑥
− 𝑥

𝜕𝑧

𝜕𝑦
= 𝑧3 are 

almost linear partial differential equations of order one. 

2.3.3 Linear Partial Differential Equation 

 A partial differential equation of order one of the form 

             𝑎(𝑥, 𝑦)
𝜕𝑧

𝜕𝑥
+ 𝑏(𝑥, 𝑦)

𝜕𝑧

𝜕𝑦
+ 𝑐(𝑥, 𝑦)𝑧 = 𝑑(𝑥, 𝑦)                …(3) 

is called a linear partial differential equation of order one, if the 

partial derivatives 
𝜕𝑧

𝜕𝑥
 and 

𝜕𝑧

𝜕𝑦
 and the dependent variable z appear in 

linear form in the equation  while the coefficients a,b,c and d 

depend only on the independent variables x and y, e.g. the partial 

differential equations 𝑥
𝜕𝑧

𝜕𝑥
+ 𝑦

𝜕𝑧

𝜕𝑦
= 𝑛𝑧  and 𝑦

𝜕𝑧

𝜕𝑥
+ 𝑥

𝜕𝑧

𝜕𝑦
+ 𝑧 = 𝑥𝑦 

are  linear partial differential equations of order one. 

2.3.4 Non-linear Partial Differential Equation 

 A partial differential equation of order one which does not fit 

into any of the above categories is called non-linear partial 

differential equation of order one, e.g. the partial differential 

equations (
𝜕𝑧

𝜕𝑥
)
2
+ (

𝜕𝑧

𝜕𝑦
)
2

= 1  and 𝑥2 (
𝜕𝑧

𝜕𝑥
)
2
+ 𝑦2 (

𝜕𝑧

𝜕𝑦
)
2

= 𝑧2 are non-

linear partial differential equations of order one. 

2.4 Origin of Linear Partial Differential Equations of Order 

One 

Before discussing the solution of the partial differential 

equations of order one, we shall examine the interesting question of 

how they arise. For the purpose, let us consider  

                      𝑥2 + 𝑦2 + (𝑧 − 𝑐)2 = 𝑘2                            …(1) 

where c and k are arbitrary constants. The equation (1) represents 

the set of all spheres whose centers lie along the z-axis. 
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Differentiating (1) partially w.r.t. x, we get  

                              𝑥 + 𝑝(𝑧 − 𝑐) = 0                                 …(2) 

Again, differentiating (1) partially w.r.t. y, we get  

                               𝑦 + 𝑞(𝑧 − 𝑐) = 0                                …(3) 

 Eliminating the arbitrary constant c from (2) and (3), we get  

                                       𝑦𝑝 − 𝑥𝑞 = 0                               …(4) 

which is a partial differential equation of order one. 

Thus, we see that the set of all spheres with centers on the z-

axis is characterized by the partial differential equation (4). In some 

sense, the function z defined by the equation (1) is called a solution 

of the partial differential equation (4). 

In chapter 1, we have already seen the origin of partial 

differential equations of order one. 

2.5 Lagrange’s Partial Differential Equation of Order One  

The quasi-linear partial differential equation of order one of 

the form  

              𝑃(𝑥, 𝑦, 𝑧)
𝜕𝑧

𝜕𝑥
+ 𝑄(𝑥, 𝑦, 𝑧)

𝜕𝑧

𝜕𝑦
= 𝑅(𝑥, 𝑦, 𝑧)            …(1) 

i.e.                                          𝑃𝑝 + 𝑄𝑞 = 𝑅                               …(2) 

where P, Q and R are functions of x, y and z is known as 

Lagrange’s partial differential equation. e.g. For example, 𝑥𝑦𝑝 +
𝑦𝑧𝑞 = 𝑥𝑦 and 𝑦2𝑝 − 𝑥𝑦𝑞 = 𝑥(𝑧 − 2𝑦) are Lagrange’s partial 

differential equations. For getting the solution of (1) or (2), we wish 

to find a relation between x, y and z involving an arbitrary function. 

The first systematic theory of equations of the above type 

characterized by (1) or (2) is given by Lagrange. For this reason, the 
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partial differential equation (1) or (2) is frequently referred to as 

Lagrange’s equation. It should be noted that in this connection the 

term linear means that p and q appear in the first degree only but P, 

Q and R may be any functions of x, y and z. 

2.6 Solutions of Linear Partial Differential Equations of Order 

One  

We have already observed that the relation of the form 

                                𝜙(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0                                      …(1) 

gives rise to PDE of order one of the from 

                                 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0                                     …(2) 

Thus, any relation of the form (1) containing two arbitrary 

constants a and b is a solution of the PDE (2). 

Now, let us consider the following Lagrange’s partial 

differential equation of order one   

               𝑃(𝑥, 𝑦, 𝑧)
𝜕𝑧

𝜕𝑥
+ 𝑄(𝑥, 𝑦, 𝑧)

𝜕𝑧

𝜕𝑦
= 𝑅(𝑥, 𝑦, 𝑧)           …(3) 

i.e.,                                 𝑃𝑝 + 𝑄𝑞 = 𝑅                                       …(4)                                                      

where x and y are independent variables. The solution of equation 

(3) or (4) is a surface S lying in the (x, y, z) –space, and is called as 

an integral surface. If we are given that 𝑧 = 𝑓(𝑥, 𝑦) is an integral 

surface of the PDE (3) or (4), then the normal to this surface will 

have direction cosines proportional to (
𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
, −1) or (𝑝, 𝑞, −1). 

Therefore, the direction of the normal is given by 𝑛⃗ = {𝑝, 𝑞, −1}. 
From the PDE (4), we observe that the normal 𝑛⃗  is perpendicular to 

the direction defined by the vector 𝑡 = {𝑃, 𝑄, 𝑅} as shown in the 

Figure 2.1. 
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Figure 2.1: Integral Surface z = f(x, y) 

Therefore, any integral surface must be tangential to a vector 

with components {𝑃, 𝑄, 𝑅} and hence, will never leave the integral 

surface. Also, the total differential dz is given by  

                              𝑑𝑧 =
𝜕𝑧

𝜕𝑥
𝑑𝑥 +

𝜕𝑧

𝜕𝑦
𝑑𝑦                             …(5) 

From equations (4) and (5), we find that  

                      {𝑃, 𝑄, 𝑅} = {𝑑𝑥, 𝑑𝑦, 𝑑𝑧}                                      …(6) 

2.7 Method of Solution of Lagrange’s Partial Differential 

Equation 

We have seen the Lagrange’s partial differential equation of 

the form 𝑃𝑝 + 𝑄𝑞 = 𝑅, where P, Q and R are functions of 

𝑥, 𝑦 and 𝑧.  

The method of solution of Lagrange’s partial differential 

equation is contained in following theorem: 

Theorem: The general solution of the Lagrange’s partial 

differential equation 

                                          𝑃𝑝 + 𝑄𝑞 = 𝑅                                    …(1) 

is                                         𝜙(𝑢, 𝑣) = 0                                     …(2) 

where               𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2                    …(3) 
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are two independent solutions of the following system of auxiliary 

equations: 

                                            
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                                   …(4) 

where 𝜙 is an arbitrary function, c1 and c2 are arbitrary constants 

and at least one of 𝑢 and 𝑣 must contain 𝑧. 

The set of equations given by (4) are called Lagrange’s 

auxiliary equations or Lagrange’s subsidiary equations. The 

curves given by 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2 are called the 

characteristic curves. 

Proof: Given Lagrange’s partial differential equation is 

                              𝑃𝑝 + 𝑄𝑞 = 𝑅                                       …(1) 

Let                           𝜙(𝑢, 𝑣) = 0                                       …(2) 

be the solution of the given Lagrange’s equation (1). 

Differentiating (2) partially w.r.t. x, we get 

            (
𝜕𝜙

𝜕𝑢

𝜕𝑢

𝜕𝑥
+

𝜕𝜙

𝜕𝑢

𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑥
) + (

𝜕𝜙

𝜕𝑣

𝜕𝑣

𝜕𝑥
+

𝜕𝜙

𝜕𝑣

𝜕𝑣

𝜕𝑧

𝜕𝑧

𝜕𝑥
) = 0    

or                             
𝜕𝜙

𝜕𝑢
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
𝑝) +

𝜕𝜙

𝜕𝑣
(
𝜕𝑣

𝜕𝑥
+

𝜕𝑣

𝜕𝑧
𝑝) = 0         …(5) 

Similarly, differentiating (2) partially w.r.t. y, we get 

                        
𝜕𝜙

𝜕𝑢
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑧
𝑞) +

𝜕𝜙

𝜕𝑣
(
𝜕𝑣

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
𝑞) = 0        …(6)  

Eliminating 𝜙 i.e., 
𝜕𝜙

𝜕𝑢
 and 

𝜕𝜙

𝜕𝑣
  from (5) and (6), we get 

          (
𝜕𝑢

𝜕𝑥
+ 𝑝

𝜕𝑢

𝜕𝑧
) (

𝜕𝑣

𝜕𝑦
+ 𝑞

𝜕𝑣

𝜕𝑧
) − (

𝜕𝑢

𝜕𝑦
+ 𝑞

𝜕𝑢

𝜕𝑧
) (

𝜕𝑣

𝜕𝑥
+ 𝑝

𝜕𝑣

𝜕𝑧
) = 0   
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or    (
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧
) 𝑝 + (

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
) 𝑞 +

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
= 0 

∴        (
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
) 𝑝 + (

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧
) 𝑞 =

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
     …(7) 

which can also be put in the form  

                                              
𝜕(𝑢,𝑣)

𝜕(𝑦,𝑧)
𝑝 +

𝜕(𝑢,𝑣)

𝜕(𝑧,𝑥)
=

𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
                …(8) 

or                                                     𝑃𝑝 + 𝑄𝑞 = 𝑅        

where                            𝑃 =
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
=

𝜕(𝑢,𝑣)

𝜕(𝑦,𝑧)
                     …(9) 

                                     𝑄 =
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧
=

𝜕(𝑢,𝑣)

𝜕(𝑧,𝑥)
                   …(10) 

and                               𝑅 =
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
=

𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
                    …(11) 

Thus, the equation 𝑃𝑝 + 𝑄𝑞 = 𝑅 is a partial differential 

equation of order one and degree one for which 𝜙(𝑢, 𝑣) = 0 is a 

solution. 

Now, taking the differentials of two independent solutions 

𝑢(𝑥, 𝑦, 𝑧) = 𝑐1  and   𝑣(𝑥, 𝑦, 𝑧) = 𝑐2 , we get 

                      
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 +

𝜕𝑦

𝜕𝑧
𝑑𝑧 = 0                        …(12)  

and                         
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 +

𝜕𝑣

𝜕𝑧
𝑑𝑧 = 0                         …(13) 

Since u and v are independent functions, therefore, solving 

equations (12) and (13) for the ratios 𝑑𝑥: 𝑑𝑦: 𝑑𝑧, we get 

              
𝑑𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦

=
𝑑𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧

=
𝑑𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

                     …(14) 

Now, comparing equation (14) with (4), we obtain 
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𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦

𝑃
=

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧

𝑄
=

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝑅
= 𝑘, say          …(15) 

∴      
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
= 𝑘𝑃,   

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧
= 𝑘𝑄,  

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
= 𝑘𝑅 

Substituting these values in equation (7), we get     

                       𝑘(𝑃𝑝 + 𝑄𝑞) = 𝑘𝑅    or     𝑃𝑝 + 𝑄𝑞 = 𝑅  

which is the given partial differential equation (1). 

Therefore, if 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2 are two 

independent solutions of the system of differential equations 
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
, then 𝜙(𝑢, 𝑣) = 0 is a solution of 𝑃𝑝 + 𝑄𝑞 = 𝑅, where 𝜙 is 

an arbitrary function. 

2.8 General Methods of Solution of Lagrange’s Equation 

Let us consider the Lagrange’s partial differential equation         

                             𝑃𝑝 + 𝑄𝑞 = 𝑅                                        …(1) 

The Lagrange’s auxiliary equations for (1) are: 

                               
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                                       …(2)  

which are generally solved by the following two methods: 

2.8.1 Method of Grouping  

 In this method, we take any set of two fractions (ratios) of 

(2), equate them and cancel the common factor, if any in the 

denominators. Then, we integrate the resulting differential equation 

to get a solution of the form u(x, y, z) = c1. Similarly, we take 

another set of two fractions of (2), equate them and repeat the above 

procedure to get another solution of the form v(x, y, z) = c2. These 
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two solutions will constitute the general solution in one of the forms 

𝜙 (u, v) = 0 or 𝑢 = 𝜙(𝑣) or  𝑣 = 𝜙(𝑢), where 𝜙 is an arbitrary 

function. 

2.8.2 Method of Multipliers  

In this method, we choose any three multipliers l, m, n which 

may be constants or functions of x, y and z in such a way that  

                        
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
=

𝑙 𝑑𝑥+𝑚 𝑑𝑦+𝑛 𝑑𝑧

𝑙𝑃+𝑚𝑄+𝑛𝑅
                   …(3) 

If it is possible to choose l, m, n such that lP + mQ + nR = 0, 

then the value of numerator l dx + m dy + n dx in the last fraction of 

(3) is also zero i.e.  l dx + m dy + n dx = 0 which can be integrated 

to have u(x, y, z) = c1. This process may be repeated to have another 

integral v(x, y, z) = c2. Sometimes the numerator l dx + m dy + n dz 

is an exact differential of the denominator, then on integration, we 

get a solution of the form u (x, y, z)  = c1. This process is repeated to 

have another solution v(x,y,z) = c2. Finally, the solutions 

𝑢(𝑥, 𝑦, 𝑧) = 𝑐1and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2 will constitute the general 

solution in one of the forms 𝜙(𝑢, 𝑣) = 0 or 𝑢 = 𝜙(𝑣) or 𝑣 = 𝜙(𝑢) 

The multipliers l, m and n are called Legrange’s multipliers 

or Lagrangian multipliers. 

2.8.3 Working Rules for Solving 𝑷𝒑 + 𝑸𝒒 = 𝑹 by Lagrange’s 

Method 

The following steps are required for solving the given partial 

differential equation of order one by Lagrange’s method: 

Step 1. Put the given partial differential equation in the form  

                                      𝑃𝑝 + 𝑄𝑞 = 𝑅                                        …(1) 

Step 2. Write down Lagrange’s auxiliary equations for (1), namely 

                                        
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                                       …(2) 
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Step 3. Solve (2) either by using the method of grouping or by the 

method of multipliers.  

Let          𝑢(𝑥, 𝑦, 𝑧) = 𝑐1  and  𝑣(𝑥, 𝑦, 𝑧) = 𝑐2                  …(3) 

be the two independent solutions of (2). 

Step 4. The general solution (or integral) of (1) is then written in 

one of the following three equivalent forms: 

                        𝜙(𝑢, 𝑣) = 0, 𝑢 = 𝜙(𝑣)  or   𝑣 = 𝜙(𝑢)               …(4) 

where 𝜙 is an arbitrary function. 

2.9 Certain Rules for Solving Lagrange’s Auxiliary Equations 

Here, we shall discuss four rules for getting two independent 

solutions of the Lagrange’s auxiliary equations 
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
. 

Accordingly, we have four types of problems based on Lagrange’s 

partial differential equation 𝑃𝑝 + 𝑄𝑞 = 𝑅.  

2.9.1 Rule I for Solving    
𝒅𝒙

𝑷
=

𝒅𝒚

𝑸
=

𝒅𝒛

𝑹
  

Let the Lagrange’s auxiliary equations for the partial 

differential equation 

                                 𝑃𝑝 + 𝑄𝑞 = 𝑅                                    …(1) 

be                                        
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                                    …(2) 

If one of the variables is either absent or cancels out from any 

two fractions of Lagrange’s auxiliary equation (2), then in this case, 

an integral can be obtained by the usual methods. The same 

procedure can be repeated with another set of two fractions of 

Lagrange’s auxiliary equations (2). 
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The following examples will make the concept more clear: 

SOLVED EXAMPLES  

Example 1. Solve the partial differential equation 2p + 3q = 1 by 

Lagrange’s method. 

Solution : The given partial differential equation can be written as  

                                         Pp + Qq = R                                      …(1) 

 where           P = 2,  Q = 3  and  R = 1 

The Lagrange’s auxiliary equations for (1) are given by  

                          
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
          or      

𝑑𝑥

2
=

𝑑𝑦

3
=

𝑑𝑧

1
             …(2) 

Taking the first two fractions of (2), we have     

                                   
𝑑𝑥

2
=

𝑑𝑦

3
   or     3dx – 2dy = 0 

which on integration gives                   3x – 2y = c1                           …(3) 

∴ 𝑢(𝑥, 𝑦, 𝑧) ≡ 3x – 2y = c1 is one solution of the given partial 

differential equation. 

Similarly, taking the last two fractions of (2), we have   

                     
𝑑𝑦

3
=

𝑑𝑧

1
    or      dy – 3dz = 0 

which on integration gives                 y – 3z = c2                       …(4) 

∴ 𝑣(𝑥, 𝑦, 𝑧) ≡ y – 3z = c2 is another solution of the given 

partial differential equation. 

Hence, the desired general solution is given by 

                                      𝜙(3𝑥 − 2𝑦, 𝑦 − 3𝑧) = 0                      …(5) 
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where ϕ is an arbitrary function. 

Example 2. Find the general solution of zp + x = 0. 

Solution : The given partial differential equation can be written as 

                                         Pp + Qq = R                                   …(1)  

where         P = z,   Q = 0   and     R =  x. 

The Lagrange’s auxiliary equations for (1) are: 

                                      
𝑑𝑥

𝑧
=

𝑑𝑦

0
=

𝑑𝑧

−𝑥
                                         …(2) 

Taking the first and the last fractions of (2), we have 

                
𝑑𝑥

𝑧
=

𝑑𝑧

−𝑥
      or      𝑥 𝑑𝑥 + 𝑧 𝑑𝑧 = 0 

 which on integration gives  
𝑥2

2
+

𝑧2

2
= 𝑘    or     𝑥2 + 𝑧2 = 𝑐1  …(3) 

∴  𝑢(𝑥, 𝑦, 𝑧) ≡ 𝑥2 + 𝑧2 = 𝑐1 is one solution of the given 

partial differential equation. 

Also, the second fraction of (2) implies that dy = 0     

which on integration gives        y = c2                                         …(4) 

∴ 𝑣(𝑥, 𝑦, 𝑧) ≡ y = c2 is another solution of the given partial 

differential equation. 

Hence, the desired general solution is given by  

                              𝜙 (𝑥2 + 𝑧2, 𝑦) = 0                              …(5) 

where ϕ is an arbitrary function. 

Example 3. Solve 𝑝 tan 𝑥 + 𝑞 tan 𝑦 = tan 𝑧. 

Solution. Given that     (tan 𝑥)𝑝 + (tan𝑦)𝑞 = tan 𝑧                …(1) 
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The Lagrange’s auxiliary equations for (1) are  

                                     
𝑑𝑥

tan𝑥
=

𝑑𝑦

tan𝑦
=

𝑑𝑧

tan𝑧
                        …(2) 

Taking the first two fractions of (2), we get  

                                           cot 𝑥 𝑑𝑥 − cot 𝑦 𝑑𝑦 = 0 

which on integration gives    log sin 𝑥 − log sin 𝑦 = log 𝑐1 

or                        log (
sin𝑥

sin𝑦
) = log 𝑐1  or   

sin𝑥

sin𝑦
= 𝑐1                   …(3) 

Taking the last two fractions of (2), we get 

                                            cot 𝑦 𝑑𝑦 − cot 𝑧 𝑑𝑧 = 0 

which on integration gives       log sin 𝑦 − log sin 𝑧 = log 𝑐2 

or                              log (
sin𝑦

sin 𝑧
) = log 𝑐2   or     

sin𝑦

sin 𝑧
= 𝑐2          …(4) 

From (3) and (4), the required general solution is given by  

                                          𝜙 (
sin𝑥

sin𝑦
,
sin𝑦

sin 𝑧
) = 0                             …(5) 

where 𝜙 is an arbitrary function. 

 Example 4. Solve        𝑦2𝑝 − 𝑥𝑦𝑞 = 𝑥(𝑧 − 2𝑦). 

Solution. Given that     𝑦2𝑝 − 𝑥𝑦𝑞 = 𝑥(𝑧 − 2𝑦)                      …(1) 

The Lagrange’s auxiliary equations for (1) are 

                               
𝑑𝑥

𝑦2 =
𝑑𝑥

−𝑥𝑦
=

𝑑𝑧

𝑥(𝑧−2𝑦)
                              …(2) 

Taking the first two fractions of (2), we get  
𝑑𝑥

𝑦
=

𝑑𝑦

−𝑥
 

or              2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 = 0    so that         𝑥2 + 𝑦2 = 𝑐1       …(3) 
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Taking the last two fractions of (2), we get  
𝑑𝑦

−𝑦
=

𝑑𝑧

𝑧−2𝑦
  

or                  
𝑑𝑧

𝑑𝑦
= −

𝑧−2𝑦

𝑦
     or       

𝑑𝑧

𝑑𝑦
+ (

1

𝑦
) 𝑧 = 2                    …(4) 

which is a linear differential equation in z. 

I.F. of (4) is given by I.F.= 𝑒∫(1/𝑦)𝑑𝑦 = 𝑒log𝑦 = 𝑦 

∴ The solution of equation (4) is given by 

                      𝑧𝑦 = ∫2𝑦 𝑑𝑦 + 𝑐2   or      𝑧𝑦 − 𝑦2 = 𝑐2             …(5) 

∴  From (3) and (5), the desired solution is given by 

                              𝜙(𝑥2 + 𝑦2, 𝑧𝑦 − 𝑦2) = 0                    …(6) 

where 𝜙 is an arbitrary function. 

Example 5. Solve     (𝑥2 + 2𝑦2)𝑝 − 𝑥𝑦𝑞 = 𝑥𝑧. 

Solution. Given that   (𝑥2 + 2𝑦2)𝑝 − 𝑥𝑦𝑞 = 𝑥𝑧                       …(1) 

The Lagrange’s auxiliary equations for (1) are 

                                
𝑑𝑥

𝑥2+2𝑦2 =
𝑑𝑦

−𝑥𝑦
=

𝑑𝑧

𝑥𝑧
                              …(2) 

Taking the last two fractions of (2), we get   

                 
𝑑𝑦

−𝑦
=

𝑑𝑧

𝑧
           or        

𝑑𝑦

𝑦
+

𝑑𝑧

𝑧
= 0 

  which on integration gives   log 𝑦 + log 𝑧 = log 𝑐1 

or                 log 𝑦𝑧 = log 𝑐1     or               𝑦𝑧 = 𝑐1                   …(3) 

Again, taking the first two fractions of (2), we have  

    
𝑑𝑥

𝑑𝑦
=

𝑥2+2𝑦2

−𝑥𝑦
         or         2𝑥

𝑑𝑥

𝑑𝑦
+ (

2

𝑦2) 𝑥2 = −4𝑦        …(4) 



42 
 

Putting 𝑥2 = 𝑣 so that   2𝑥
𝑑𝑥

𝑑𝑦
=

𝑑𝑣

𝑑𝑦
 in (4), we get  

                      
𝑑𝑣

𝑑𝑥
+ (

2

𝑦
) 𝑣 = −4𝑦                                        …(5) 

which is a linear differential equation in v. 

Its integrating factor = 𝑒∫(2/𝑦)𝑑𝑦 = 𝑒2 log𝑦 = 𝑦2  

Therefore, the solution of equation (5) is given by  

         𝑦2𝑣 = ∫{(−4𝑦)𝑥𝑦2} 𝑑𝑦 + 𝑐2   or    𝑦2𝑥2 + 𝑦4 = 𝑐2      …(6) 

Hence, from (3) and (6), the general solution is given by 

                         𝜙(𝑦𝑧, 𝑦2𝑥2 + 𝑦4) = 0                              …(7) 

where ϕ is an arbitrary function. 

EXERCISE 2(A) 

Solve the following partial differential equations: 

1. 𝑝 + 𝑞 = 1  2. 𝑥𝑝 + 𝑦𝑞 = 𝑧  3. 𝑧𝑝 = 𝑥 

4. 𝑥2𝑝 + 𝑦2𝑝 = 𝑧2 5. 𝑥2𝑝 + 𝑦2𝑞 + 𝑧2 = 0  

6. 𝑝 + 𝑞 = sin 𝑥 7. 𝑦𝑧𝑝 + 2𝑥𝑞 = 𝑥𝑦 8. 𝑦𝑧𝑝 + 𝑧𝑥𝑞 = 𝑥𝑦 

ANSWERS  

1. 𝜙(𝑥 − 𝑦, 𝑥 − 𝑧) = 0 2. 𝜙 (
𝑥

𝑧
,
𝑦

𝑧
) = 0 

3. 𝜙(𝑦, 𝑥2 − 𝑧2) = 0  4. 𝜙 (
1

𝑥
−

1

𝑦
,
1

𝑦
−

1

𝑧
) = 0 

5. 𝜙 (
1

𝑥
−

1

𝑦
,
1

𝑦
+

1

𝑧
) = 0 6.𝜙(𝑥 − 𝑦, 𝑧 + cos 𝑥) = 0 

7. 𝜙(𝑥2 − 𝑧2, 𝑦2 − 4𝑧) = 0 8. 𝜙(𝑥2 − 𝑦2, 𝑥2 − 𝑧2) = 0 
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2.9.2 Rule II for Solving  
𝒅𝒙

𝑷
=

𝒅𝒚

𝑸
=

𝒅𝒛

𝑹
 

Let the Lagrange’s auxiliary equations for the partial differen-

tial equation                             𝑃𝑝 + 𝑄𝑞 = 𝑅                             …(1) 

be                                               
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                             …(2) 

Suppose that one integral of (2) is known by using rule 1 

explained in previous article and suppose also that another integral 

cannot be obtained by using the rule I of previous article. Then, one 

(the first) integral known to us is used to find another (the second) 

integral as shown in the following solved examples. Note that in the 

second integral, the constant of integration of the first integral 

should be removed later on. 

SOLVED EXAMPLES 

Example 1.  Find the general solution of p + 3q = 5z + tan (y – 3x). 

Solution : Given that     𝑝 + 3𝑞 = 5𝑧 + tan(𝑦 − 3𝑥)               …(1) 

The Lagrange’s auxiliary equations for (1) are  

                                       
𝑑𝑥

1
=

𝑑𝑦

3
=

𝑑𝑧

5𝑧+tan(𝑦−3𝑥)
                        …(2) 

Taking the first two functions of (2), we have 

                      
𝑑𝑥

1
=

𝑑𝑦

3
   or    dy – 3dx = 0                           …(3) 

which on integration gives               y – 3x = c1                          …(4) 

∴  y – 3x = c1 is one solution of the given PDE, where c1 is an 

arbitrary constant. 

Again, taking the first and the last fractions of (2), we have 
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𝑑𝑥

1
=

𝑑𝑧

5𝑧+tan(𝑦−3𝑥)
       or       𝑑𝑥 =

𝑑𝑧

5𝑧+tan(𝑦−3𝑥)
 

Putting 𝑦 − 3𝑥 = 𝑐1from (4) in it, we obtain   𝑑𝑥 =
𝑑𝑧

5𝑧+tan𝑐1
   …(5) 

which on integration gives    𝑥 =
1

5
log(5𝑧 + tan 𝑐1) + 𝑐2         …(6) 

Removing the constant c1 from this by using (4), we get 

              5𝑥 − log[5𝑧 + tan(𝑦 − 3𝑥)] = 𝑐2                      …(7) 

∴  5𝑥 − log[5𝑧 + tan(𝑦 − 3𝑥)] = 𝑐2 is another solution of the 

given PDE, where c2 is an arbitrary constant. 

Hence, the required general solution is given by 

               𝜙[𝑦 − 3𝑥, 5𝑥 − log  {5𝑧 + tan(𝑦 − 3𝑥)}] = 0          …(8) 

where ϕ is an arbitrary function. 

Example 2. Solve      𝑥𝑧(𝑧2 + 𝑥𝑦)𝑝 − 𝑦𝑧(𝑧2 + 𝑥𝑦)𝑞 = 𝑥4. 

Solution. Given that  𝑥𝑧(𝑧2 + 𝑥𝑦)𝑝 − 𝑦𝑧(𝑧2 + 𝑥𝑦)𝑞 = 𝑥4     …(1) 

The Lagrange’s auxiliary equation for (1) are 

                      
𝑑𝑥

𝑥𝑧(𝑧2+𝑥𝑦)
=

𝑑𝑦

−𝑦𝑧(𝑧2+𝑥𝑦)
=

𝑑𝑧

𝑥4                         …(2) 

Cancelling 𝑧(𝑧2 + 𝑥𝑦) from first two fractions of (2), we get 

                         
𝑑𝑥

𝑥
=

𝑑𝑦

−𝑦
      or      

𝑑𝑥

𝑥
+

𝑑𝑦

𝑦
= 0                            …(3) 

Integrating (3), we get    log 𝑥 + log 𝑦 = log 𝑐1  or   𝑥𝑦 = 𝑐1    …(4) 

Taking the first and the last fractions of (2), we have   

                                      
𝑑𝑧

𝑥𝑧(𝑧2+𝑥𝑦)
=

𝑑𝑧

𝑥4
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Putting 𝑥𝑦 = 𝑐1from (4) in it, we get        
𝑑𝑥

𝑥𝑧(𝑧2+𝑐1)
=

𝑑𝑧

𝑥4
  

or    𝑥3𝑑𝑥 = 𝑧(𝑧2 + 𝑐1)𝑑𝑧    or    𝑥3𝑑𝑥 − (𝑧3 + 𝑐1𝑧)𝑑𝑧 = 0   …(5) 

Integrating (5), we get   
𝑥4

4
−

𝑧4

4
−

𝑐1𝑧2

2
=

𝑐2

4
   

or                                         𝑥4 − 𝑧4 − 2𝑐1𝑧
2 = 𝑐2                          …(6) 

Removing the constant c1 from this by using (4), we get 

                                𝑥4 − 𝑧4 − 2𝑥𝑦𝑧2 = 𝑐2                      …(7) 

From (4) and (7), the required integral is given by  

                          𝜙(𝑥𝑦, 𝑥4 − 𝑧4 − 2𝑥𝑦𝑧2) = 0                        …(8) 

where 𝜙 is an arbitrary function. 

Example 3. Solve           𝑥𝑦𝑝 + 𝑦2𝑞 = 𝑧𝑥𝑦 − 2𝑥2. 

Solution. Given that      𝑥𝑦𝑝 + 𝑦2𝑞 = 𝑧𝑥𝑦 − 2𝑥2                     …(1) 

The Lagrange’s auxiliary equations for (1) are  

                                    
𝑑𝑥

𝑥𝑦
=

𝑑𝑦

𝑦2 =
𝑑𝑧

𝑧𝑥𝑦−2𝑥2                          …(2) 

Taking the first two fractions of (2), we have  

                                
𝑑𝑥

𝑥𝑦
=

𝑑𝑦

𝑦2          or     
1

𝑥
𝑑𝑥 −

1

𝑦
𝑑𝑦 = 0           …(3) 

Integrating (3), we get     log 𝑥 − log 𝑦 = log 𝑐1 

or                               𝑥/𝑦 = 𝑐1   or     𝑥 = 𝑐1𝑦                          …(4) 

Again, taking the last two fractions of (2), we get 

                                            
𝑑𝑦

𝑦2
=

𝑑𝑧

𝑧𝑥𝑦−2𝑥2
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Putting 𝑥 = 𝑐1𝑦 from (4) in it, we get     
𝑑𝑦

𝑦2
=

𝑑𝑧

𝑐1𝑧𝑦2−2𝑐1
2𝑦2

   

or                𝑑𝑦 =
𝑑𝑧

𝑐1(𝑧−2𝑐1)
      or     𝑐1𝑑𝑦 −

𝑑𝑧

𝑧−2𝑐1
 = 0               …(5) 

Integrating (5), we get      𝑐1𝑦 − log(𝑧 − 2𝑐1
 ) = 𝑐2         …(6) 

Removing constant c1 from this by using (4), we get 

                  𝑥 − log[𝑧 − 2(𝑥  /𝑦  )] = 𝑐2                             …(7) 

From (4) and (7), the required general solution is given by 

                     𝜙[(𝑥/𝑦), 𝑥 − log{𝑧 − 2(𝑥2/𝑦2)}] = 0                 …(8) 

where  is an arbitrary function. 

Example 4. Solve            𝑥𝑧𝑝 + 𝑦𝑧𝑞 = 𝑥𝑦. 

Solution. Given that        𝑥𝑧𝑝 + 𝑦𝑧𝑞 = 𝑥𝑦                                …(1) 

The Lagrange’s auxiliary equations for (1) are  

                                              
𝑑𝑥

𝑥𝑧
=

𝑑𝑦

𝑦𝑧
=

𝑑𝑧

𝑥𝑦
                                 …(2) 

Taking the first two fractions of (2), we get  

                                                
𝑑𝑥

𝑥
−

𝑑𝑦

𝑦
= 0                                 …(3) 

Integrating (3), we get    log 𝑥 − log 𝑦 = log 𝑐1 

or                                       𝑥/𝑦 = 𝑐1    or   𝑥 = 𝑐1𝑦                   …(4) 

Taking the last two fractions of (2), we get   
𝑑𝑦

𝑦𝑧
=

𝑑𝑧

𝑥𝑦
 

Using 𝑥 = 𝑐1𝑦 from (4) in it, we get             
𝑑𝑦

𝑦𝑧
=

𝑑𝑧

𝑐1𝑦2 
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or      𝑐1𝑦𝑑𝑦 = 𝑧𝑑𝑧     or     2𝑐1𝑦𝑑𝑦 − 2𝑧 𝑑𝑧 = 0                      …(5) 

Integrating (5), we get          𝑐1𝑦
2 − 𝑧2 = 𝑐2                    …(6) 

Removing constant c1 from this by using (4), we get 

                                                   𝑥𝑦 − 𝑧 = 𝑐2                    …(7) 

From (4) and (7), the required solution is given by 

                                    𝜙(𝑥/𝑦, 𝑥𝑦 − 𝑧2) = 0                     …(8) 

where 𝜙 is an arbitrary function. 

Example 5. Solve       𝑝𝑦 + 𝑞𝑥 = 𝑥𝑦𝑧2(𝑥2 − 𝑦2). 

Solution. Given that        𝑝𝑦 + 𝑞𝑥 = 𝑥𝑦𝑧2(𝑥2 − 𝑦2)                …(1) 

The Lagrange’s auxiliary equations for (1) are  

                                  
𝑑𝑥

𝑦
=

𝑑𝑦

𝑥
=

𝑑𝑧

𝑥𝑦𝑧2(𝑥2−𝑦2)
                      …(2) 

Taking the first two fractions of (2), we get     
𝑑𝑥

𝑦
=

𝑑𝑦

𝑥
 

or        𝑥 𝑑𝑦 − 𝑦 𝑑𝑦 = 0     or     2𝑥𝑑𝑥 − 2𝑦𝑑𝑦 = 0                  …(3) 

Integrating it, we get                    𝑥2 − 𝑦2 = 𝑐1                …(4) 

Taking the last two fractions of (2), we get   
𝑑𝑦

𝑥
=

𝑑𝑧

𝑥𝑦𝑧2(𝑥2−𝑦2)
 

Using (4) in it, we get                       
𝑑𝑦

𝑥
=

𝑑𝑧

𝑥𝑦𝑧2𝑐1
 

or                                     2𝑐1𝑦𝑑𝑦 − 2𝑧−2𝑑𝑧 = 0                       …(5) 

Integrating (5), we get      𝑐1𝑦
2 + (

2

𝑧
) = 𝑐2                       …(6) 

Removing constant c1 from this by using (4), we get  



48 
 

                                 𝑦2(𝑥2 − 𝑦2) + (2/𝑧) = 𝑐2               …(7) 

From (4) and (7), the required solution is  given by 

                         𝜙[(𝑥2 − 𝑦2), 𝑦2(𝑥2 − 𝑦2) + (2/𝑧)] = 0         …(8) 

where 𝜙 is an arbitrarty function. 

Example 6. Solve  𝑝𝑥(𝑧 − 2𝑦2) = (𝑧 − 𝑞𝑦)(𝑧 − 𝑦2 − 2𝑥3). 

Solution. Re-writing the given partial differential equation, we have 

        𝑥(𝑧 − 2𝑦2)𝑝 + 𝑦(𝑧 − 𝑦2 − 2𝑥3)𝑞 = 𝑧(𝑧 − 𝑦2 − 2𝑥3)    …(1) 

The Lagrange’s auxiliary equations for (1) are  

           
𝑑𝑥

𝑥(𝑧−2𝑦2)
=

𝑑𝑦

𝑦(𝑧−𝑦2−2𝑥3)
=

𝑑𝑧

𝑧(𝑧−𝑦2−2𝑥3)
                     …(2) 

Taking the last two fractions of (2), we get  
𝑑𝑧

𝑧
=

𝑑𝑦

𝑦
 

Integrating it, we get                log 𝑧 = log 𝑦 + log 𝑐1 

or                         𝑧/𝑦 = 𝑐1       or           𝑧 = 𝑐1𝑦                       …(3) 

where c1 is an arbitrary constant. 

Again, taking the first two fractions of (2), we have  

                                         
𝑑𝑥

𝑥(𝑧−2𝑦2)
=

𝑑𝑦

𝑦(𝑧−𝑦2−2𝑥3)
 

Using (3) in it, we get   
𝑑𝑥

𝑥(𝑐1𝑦−2𝑦2)
=

𝑑𝑦

𝑦(𝑐1𝑦−𝑦2−2𝑥3)
 

or        (𝑐1𝑦 − 𝑦2 − 2𝑥3)𝑑𝑥 + 𝑥(2𝑦 − 𝑐1)𝑑𝑦 = 0                    …(4) 

Comparing (4) with 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, we have  

         𝑀 = 𝑐1𝑦 − 𝑦2 − 2𝑥3  and    𝑁 = 𝑥(2𝑦 − 𝑐1) 
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∴      
𝜕𝑀

𝜕𝑦
= 𝑐1 − 2𝑦               and   

𝜕𝑁

𝜕𝑥
= 2𝑦 − 𝑐1 

Now    
1

𝑁
(
𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) =

1

𝑥(2𝑦−𝑐1)
[(𝑐1 − 2𝑦) − (2𝑦 − 𝑐1)] 

                                 =
−2(2𝑦−𝑐1)

𝑥(2𝑦−𝑐1)
= −

2

𝑥
  

which is a function of 𝑥 alone. 

Hence, the integrating factor (I.F.) of (4) is given by 

              I.F. = 𝑒∫(−2/𝑥)𝑑𝑥 = 𝑒−2 log𝑥 = 𝑒log𝑥−2
= 𝑥−2 

Multiplying (4) by 𝑥−2, we get the following equation: 

        (𝑐1𝑦𝑥−2 − 𝑦2𝑥−2 − 2𝑥)𝑑𝑥 + 𝑥−1(2𝑦 − 𝑐1)𝑑𝑦 = 0 

By usual rule, its solution is given by  

    ∫{(𝑐1𝑦 − 𝑦2)𝑥−2 − 2𝑥} 𝑑𝑥 + ∫ 𝑥−1 (2𝑦 − 𝑐1)𝑑𝑦 = 𝑐2 

    (Treating y as constant)        (Integrating terms free from x) 

or   (𝑐1𝑦 − 𝑦2)(−1/𝑥) − 𝑥2 = 𝑐2  or   (𝑦2 − 𝑐1𝑦)/𝑥 − 𝑥2 = 𝑐2 

Removing constant c1 from this by using (3), we get 

                     (𝑦2 − 𝑧 − 𝑥3)/𝑥 = 𝑐2, since   𝑐1𝑦 = 𝑧                 …(5) 

where c2 is an arbitrary constant. 

From (3) and (5), the required solution is given by 

                           𝜙[(𝑧/𝑦), (𝑦2 − 𝑧 − 𝑥3)/𝑥] = 0               …(6) 

where 𝜙 is an arbitrary function. 
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EXERCISE 2(B) 

Solve the following partial differential equations:  

1. 𝑝 − 2𝑞 = 3𝑥2 sin(𝑦 + 2𝑥) 2. 𝑝 − 𝑞 = 𝑧/(𝑥 + 𝑦) 

3. 𝑥𝑦2𝑝 − 𝑦3𝑞 + 𝑎𝑥𝑧 = 0 4.(𝑥2 − 𝑦2 − 𝑧2)𝑝 + 2𝑥𝑦𝑞 = 2𝑥 

5. 𝑧(𝑝 − 𝑞) = 𝑧2 + (𝑥 + 𝑦)2 6. 𝑝 + 3𝑞 = 𝑧 + cot(𝑦 − 3𝑥) 

7. 𝑥𝑦𝑝 + 𝑦2𝑞 = 𝑥𝑦𝑧 − 2𝑥2 8. 𝑧𝑝 − 𝑧𝑞 = 𝑥 + 𝑦 

ANSWERS 

1. 𝜙[𝑦 + 2𝑥, 𝑥2 sin(𝑦 + 2𝑥) − 𝑧] = 0 

2. 𝜙[𝑥 + 𝑦, 𝑥 − (𝑥 + 𝑦) log 𝑧] = 0 

3. 𝜙[𝑥𝑦, log 𝑧 (𝑎𝑥/3𝑦2)] = 0 

4. 𝜙[𝑦/𝑧, (𝑥2 + 𝑦2 + 𝑧2)/𝑧] = 0 

5. 𝜙[𝑥 + 𝑦, 𝑒2𝑦{𝑧2 + (𝑥 + 𝑦)2}] = 0 

6. 𝜙[𝑦 − 3𝑥, 𝑥 − log|𝑧 + cot(𝑦 − 3𝑥)|] = 0 

7. 𝜙[𝑥/𝑦, 𝑥 − log|𝑧 − (2𝑥/𝑦)|] = 0 

8. 𝜙[𝑥 + 𝑦, 2𝑥(𝑥 + 𝑦) − 𝑧2] = 0 

2.9.3 Rule III for Solving 
𝒅𝒙

𝑷
=

𝒅𝒚

𝑸
=

𝒅𝒛

𝑹
  

Let the Lagrange’s auxiliary equations for the partial 

differential equation        𝑃𝑝 + 𝑄𝑞 = 𝑅                                     …(1) 

be                                       
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                                     …(2) 
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Again, if 𝑃1, 𝑄1 and 𝑅1 be functions of 𝑥, 𝑦 and z, then by a 

well-known principle of algebra, each fraction in (2) will be equal 

to  

       (𝑃1𝑑𝑥 + 𝑄1𝑑𝑦 + 𝑅1𝑑𝑧)/(𝑃1𝑃 + 𝑄1𝑄 + 𝑅1𝑅)           …(3) 

If 𝑃1𝑃 + 𝑄1𝑄 + 𝑅1𝑅 = 0, then the numerator of (3) is also 

zero. This gives 𝑃1𝑑𝑥 + 𝑄1𝑑𝑦 + 𝑅1𝑑𝑧 = 0 which can be integrated 

to give 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1. This method may be repeated to get another 

integral 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2. Here, 𝑃1, 𝑄1, and 𝑅1 are called as 

Lagrange’s multipliers. As a special case, these can be constants 

also. Sometimes, only one integral is possible by the use of 

Lagrange’s multipliers. In such cases, the second integral should be 

obtained either by using rule I or rule II of the previous articles as 

the case may be. 

SOLVED EXAMPLES 

Example 1. Solve {(𝑏 − 𝑐)/𝑎}𝑦𝑧𝑝 + {(𝑐 − 𝑎)/𝑏}𝑧𝑥𝑝 = {(𝑎 − 𝑏)/𝑐}𝑥𝑦 

Solution. Given partial differential equation is  

             {(𝑏 − 𝑐)/𝑎}𝑦𝑧𝑝 + {(𝑐 − 𝑎)/𝑏}𝑧𝑥𝑝 = {(𝑎 − 𝑏)/𝑐}𝑥𝑦         …(1) 

The Lagrange’s auxiliary equations of (1) are  

                              
𝑎 𝑑𝑥

(𝑏−𝑐)𝑦𝑧
=

𝑏 𝑑𝑦

(𝑐−𝑎)𝑧𝑥
=

𝑐 𝑑𝑧

(𝑎−𝑏)𝑥𝑦
                 …(2) 

Choosing 𝑥, 𝑦 and 𝑧 as multipliers, each fraction for (2) is  

              =
𝑎𝑥 𝑑𝑥+𝑏𝑦 𝑑𝑦+𝑐𝑧 𝑑𝑧

𝑥𝑦𝑧[(𝑏−𝑐)+(𝑐−𝑎)+(𝑎−𝑏)]
=

𝑎𝑥 𝑑𝑥+𝑏𝑦 𝑑𝑦+𝑐𝑧 𝑑𝑧

0
 

∴   𝑎𝑥 𝑑𝑥 + 𝑏𝑦 𝑑𝑦 + 𝑐𝑧 𝑑𝑧 = 0 or   2𝑎𝑥 𝑑𝑥 + 2𝑏𝑦𝑑𝑦 + 2𝑐𝑧𝑑𝑧 = 0 

Integrating it, we get       𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 = 𝑐1              …(3) 

where 𝑐1 is an arbitrary constant.                             
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Choosing 𝑎𝑥, 𝑏𝑦 and 𝑐𝑧 as multipliers, each fraction of (2) is  

         =
𝑎2𝑥𝑑𝑥+𝑏2𝑦𝑑𝑦+𝑐2𝑧𝑑𝑧

𝑥𝑦𝑧[𝑎(𝑏−𝑐)+𝑏(𝑐−𝑎)+𝑐(𝑎−𝑏)]
=

𝑎2𝑥𝑑𝑥+𝑏2𝑦𝑑𝑦+𝑐2𝑧𝑑𝑧

0
 

∴  𝑎2𝑥𝑑𝑥 + 𝑏2𝑦𝑑𝑦 + 𝑐2𝑧𝑑𝑧 = 0   or   2𝑎2𝑥𝑑𝑥 + 2𝑏2𝑦𝑑𝑦 + 2𝑐2𝑧𝑑𝑧 = 0 

Integrating it, we get      𝑎2𝑥2 + 𝑏2𝑦2 + 𝑐2𝑧2 = 𝑐2         …(4) 

where 𝑐2 is an arbitrary constant.   

From (3) and (4), the required general solution is given by 

                𝜙(𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2, 𝑎2𝑥2 + 𝑏2𝑦2 + 𝑐2𝑧2) = 0       …(5) 

where 𝜙 is an arbitrary function. 

Example 2. Solve        𝑧(𝑥 + 𝑦)𝑝 + 𝑧(𝑥 − 𝑦)𝑞 = 𝑥2 + 𝑦2. 

Solution. Given that    𝑧(𝑥 + 𝑦)𝑝 + 𝑧(𝑥 − 𝑦)𝑞 = 𝑥2 + 𝑦2      …(1) 

The Lagrange’s auxiliary equations for (1) are 

                           
𝑑𝑥

𝑧(𝑥+𝑦)
=

𝑑𝑦

𝑧(𝑥−𝑦) 
=

𝑑𝑧

𝑥2+𝑦2                         …(2) 

Choosing 𝑥,−𝑦,−𝑧 as multipliers, each fraction of (2) is 

         =
𝑥 𝑑𝑥−𝑦 𝑑𝑦−𝑧 𝑑𝑧

𝑥𝑧(𝑥+𝑦)−𝑦𝑧(𝑥−𝑦)−𝑧(𝑥2−𝑦2)
=

𝑥 𝑑𝑥−𝑦 𝑑𝑦−𝑧𝑑𝑧

0
 

∴   𝑥 𝑑𝑦 − 𝑦 𝑑𝑦 − 𝑧 𝑑𝑧 = 0      or     2𝑥 𝑑𝑥 − 2𝑦 𝑑𝑦 − 2𝑧 𝑑𝑧 = 0 

Integrating it, we get         𝑥2 − 𝑦2 − 𝑧2 = 𝑐1                  …(3) 

where 𝑐1 is an arbitrary constant. 

Again, choosing 𝑦, 𝑥, −𝑧 as multipliers, each fraction of (2) is  

=
𝑦 𝑑𝑥+𝑥 𝑑𝑦−𝑧 𝑑𝑧

𝑦𝑧(𝑥+𝑦)+𝑥𝑧(𝑥−𝑦)−𝑧(𝑥2+𝑦2)
=

𝑦 𝑑𝑥+𝑥 𝑑𝑦−𝑧 𝑑𝑧

0
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∴  𝑦 𝑑𝑥 + 𝑥 𝑑𝑦 − 𝑧 𝑑𝑧 = 0    or    2𝑑(𝑥𝑦) − 2𝑧 𝑑𝑧 = 0 

Integrating it, we get                        2𝑥𝑦 − 𝑧2 = 𝑐2          …(4) 

where 𝑐2 is an arbitrary constant.                        

From (3) and (4), the required general solution is given by 

                             𝜙(𝑥2 − 𝑦2 − 𝑧2, 2𝑥𝑦 − 𝑧2) = 0                   …(5) 

where 𝜙 is an arbitrary function. 

Example 3. Solve       (𝑚𝑧 − 𝑛𝑦)𝑝 + (𝑛𝑥 − 𝑙𝑧)𝑞 = 𝑙𝑦 − 𝑚𝑥. 

Solution. Given that  (𝑚𝑧 − 𝑛𝑦)𝑝 + (𝑛𝑥 − 𝑙𝑧)𝑞 = 𝑙𝑦 − 𝑚𝑥   …(1) 

The Lagrange’s auxiliary equations for (1) are  

                                  
𝑑𝑥

𝑚𝑧−𝑛𝑦
=

𝑑𝑦

𝑛𝑥−𝑙𝑧
=

𝑑𝑧

𝑙𝑦−𝑚𝑥
                   …(2) 

Choosing 𝑥, 𝑦, 𝑧 as multipliers, each fraction of (2) is  

          =
𝑥 𝑑𝑥+𝑦𝑑𝑦+𝑧𝑑𝑥

𝑥(𝑚𝑧−𝑛𝑦)+𝑦(𝑛𝑥−𝑙𝑧)+𝑧(𝑙𝑦−𝑚𝑥)
=

𝑥𝑑𝑥+𝑦𝑑𝑦+𝑧𝑑𝑧

0
 

∴       𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 𝑧𝑑𝑥 = 0  or  2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 + 2𝑧𝑑𝑧 = 0 

Integrating it, we get      𝑥2 + 𝑦2 + 𝑧2 = 𝑐1                     …(3) 

where 𝑐1 is an arbitrary constant.     

Again, choosing 𝑙, 𝑚, 𝑛 as multipliers, each fraction of (2) is 

          =
𝑙𝑑𝑥+𝑚𝑑𝑦+𝑛𝑑𝑧

𝑙(𝑚𝑥−𝑛𝑦)+𝑚(𝑛𝑥−𝑙𝑧)+𝑛(𝑙𝑦−𝑚𝑥)
=

𝑙𝑑𝑥+𝑚𝑑𝑦+𝑛𝑑𝑧

0
 

∴    We have                     𝑙𝑑𝑥 + 𝑚𝑑𝑦 + 𝑛𝑑𝑧 = 0  

Integrating it, we get      𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 𝑐2                    …(4) 

where c2 is an arbitrary constant. 
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From (3) and (4), the required general solution is given by 

                           𝜙(𝑥2 + 𝑦2 + 𝑧2, 𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧) = 0             …(5) 

where 𝜙 is an arbitrary function. 

Example 4. Solve  𝑥(𝑦2 − 𝑧2)𝑞 − 𝑦(𝑧2 + 𝑥2)𝑞 = 𝑧(𝑥2 + 𝑦2). 

Solution. Given that 𝑥(𝑦2 − 𝑧2)𝑞 − 𝑦(𝑧2 + 𝑥2)𝑞 = 𝑧(𝑥2 + 𝑦2)  …(1) 

The Lagrange’s auxiliary equations for (1) are  

                              
𝑑𝑥

𝑥(𝑦2−𝑧2)
=

𝑑𝑦

−𝑦(𝑧2+𝑥2)
=

𝑑𝑧

𝑧(𝑥2+𝑦2)
           …(2) 

Choosing 𝑥, 𝑦, 𝑧, as multipliers, each fraction of (2) is  

            =
𝑥𝑑𝑥+𝑦𝑑𝑦+𝑧𝑑𝑧

𝑥2(𝑦2−𝑧2)−𝑦2(𝑧2+𝑥2)+𝑧2(𝑥2+𝑦2)
=

𝑥𝑑𝑥+𝑦𝑑𝑦+𝑧𝑑𝑧

0
 

∴   We have                        𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 𝑧𝑑𝑧 = 0  

Integrating it, we get        𝑥2 + 𝑦2 + 𝑧2 = 𝑐1                   …(3) 

Choosing 
1

𝑥
, −

1

𝑦
, −

1

𝑧
 as multipliers, each fraction of (2) is  

           =
(1/𝑥)𝑑𝑥−(1/𝑦)𝑑𝑦−(1/𝑧)𝑑𝑧

𝑦2−𝑧2+𝑧2+𝑥2−(𝑥2+𝑦2)
=

(1/𝑥)𝑑𝑥−(1/𝑦)𝑑𝑦−(1/𝑧)𝑑𝑧

0
 

∴    We have     (1/𝑥)𝑑𝑥 − (1/𝑦)𝑑𝑦 − (1/𝑧)𝑑𝑧 = 0  

Integrating it, we get log 𝑥 − log 𝑦 − log 𝑧 = log 𝑐2      

or                     log{𝑥/(𝑦𝑧)} = log 𝑐2   or   𝑥/𝑦𝑧 = 𝑐2               …(4) 

Using (3) and (4), the required general solution is given by  

                                           𝜙 (𝑥2 + 𝑦2 + 𝑧2,
𝑥

𝑦𝑧
) = 0                …(5) 

where 𝜙 is an arbitrary function. 
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Example 5.  Solve   (𝑥 − 𝑦)𝑝 + (𝑥 + 𝑦)𝑞 = 2𝑥𝑧. 

Solution. Given that      (𝑥 − 𝑦)𝑝 + (𝑥 + 𝑦)𝑞 = 2𝑥𝑧               …(1) 

The Lagrange’s auxiliary equations for (1) are  

                             
𝑑𝑥

𝑥−𝑦
=

𝑑𝑦

𝑥+𝑦
=

𝑑𝑧

2𝑥𝑧
                                    …(2) 

Taking the first two fractions of (2), we have  

                          
𝑑𝑦

𝑑𝑥
=

𝑥+𝑦

𝑥−𝑦
=

1+(𝑦/𝑥)

1−(𝑦/𝑥)
                                   …(3) 

which is a homogeneous differential equation in x and y. 

Therefore, let us put     𝑦/𝑥 = 𝑣    i.e.         𝑦 = 𝑥𝑣          …(4) 

so that, we have           (𝑑𝑦/𝑑𝑥) = 𝑣 + 𝑥(𝑑𝑣/𝑑𝑥)                    …(5) 

Using (4) and (5) in (2), we get       𝑣 + 𝑥
𝑑𝑣

𝑑𝑥
=

1+𝑣

1−𝑣
 

or                              𝑥
𝑑𝑣

𝑑𝑥
=

1+𝑣

1−𝑣
− 𝑣 =

1+𝑣−𝑣(1−𝑣)

1−𝑣
=

1+𝑣2

1−𝑣
 

Separating the variables, we can write 

          
1−𝑣

1+𝑣2 𝑑𝑣 =
𝑑𝑥

𝑥
       or           (

2

1+𝑣2 −
2𝑣

1+𝑣2) 𝑑𝑣 =
2𝑑𝑥

𝑥
          …(6) 

Integrating it, we get    2 tan−1 𝑣 − log(1 + 𝑣2) = 2 log 𝑥 − log 𝑐1 

or                         log 𝑥2 − log(1 + 𝑣2) − log 𝑐1 = 2 tan−1 𝑣 

or   log{𝑥2(1 + 𝑣2)/𝑐1} = 2 tan−1 𝑣  or   𝑥2(1 + 𝑣2) = 𝑐1𝑒
2 tan−1 𝑣 

or                  𝑥2[1 + (𝑦2/𝑥2)] = 𝑐1𝑒
2 tan−1(𝑦/𝑥), as  𝑣 = 𝑦/𝑥 by (4) 

or                           (𝑥2 + 𝑦2)𝑒−2tan−1(
𝑦

𝑥
) = 𝑐1                           …(7) 

where 𝑐1 is an arbitrary constant. 



56 
 

Choosing 1,1, −1/𝑧 as multipliers, each fraction of (2) is  

                       =
𝑑𝑥+𝑑𝑦−(1/𝑧)𝑑𝑧

(𝑥−𝑦)+(𝑥+𝑦)−(1/𝑧)(2𝑥𝑧)
=

𝑑𝑥+𝑑𝑦−(1/𝑧)𝑑𝑧

0
 

∴   We have                     𝑑𝑥 + 𝑑𝑦 − (1/𝑧)𝑑𝑧 = 0  

Integrating it, we get        𝑥 + 𝑦 − log 𝑧 = 𝑐2                   …(8) 

where 𝑐2 is an arbitrary constant. 

From (7) and (8), the required general solution is given by 

                   𝜙 ((𝑥2 + 𝑦2)𝑒−2tan−1(𝑦/𝑥), 𝑥 + 𝑦 − log 𝑧) = 0     …(9) 

where 𝜙 is an arbitrary function. 

EXERCISE 2(C) 

Solve the following partial differential equations by 

Lagrange’s method: 

1. 𝑥(𝑦2 − 𝑧2)𝑝 + 𝑦(𝑧2 − 𝑥2)𝑞 = 𝑧(𝑥2 − 𝑦2) 

2. 𝑧(𝑥𝑝 − 𝑦𝑞) = 𝑦2 − 𝑥2     3. (𝑦2 + 𝑧2)𝑝 − 𝑥𝑦𝑞 + 𝑥𝑧 = 0 

4. 𝑦𝑝 − 𝑥𝑞 = 2𝑥 − 3𝑦             5. 𝑥2(𝑦 − 𝑧)𝑝 + 𝑦2(𝑧 − 𝑥)𝑞 = 𝑧2(𝑥 − 𝑦) 

ANSWERS 

1. 𝜙(𝑥2 + 𝑦2 + 𝑧2, 𝑥𝑦𝑧) = 0  2.𝜙(𝑥2 + 𝑦2 + 𝑧2, 𝑥𝑦) = 0 

3. 𝜙(𝑥2 + 𝑦2 + 𝑧2, 𝑦/𝑧) = 0  4. 𝜙(𝑥2 + 𝑦2, 3𝑥 + 2𝑦 + 𝑧) = 0 

5. 𝜙 (𝑥𝑦𝑧,
1

𝑥
+

1

𝑦
+

1

𝑧
) = 0 

2.9.4  Rule IV for Solving  
𝒅𝒙

𝑷
=

𝒅𝒚

𝑸
=

𝒅𝒛

𝑹
   

Let the Lagrange’s auxiliary equations for the PDE 
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                               𝑃𝑝 + 𝑄𝑞 = 𝑅                                      …(1) 

be                                       
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                                     …(2) 

Let 𝑃1, 𝑄1 and 𝑅1 be functions of 𝑥, 𝑦 and z. Then, by a well- 

known principle of algebra, each fraction of (2) will be equal to 

         (𝑃1𝑑𝑥 + 𝑄1𝑑𝑦 + 𝑅1𝑑𝑧)/(𝑃1𝑃 + 𝑄1𝑄 + 𝑅1𝑅)         …(3) 

Suppose that the numerator of (3) is an exact differential of 

the denominator of (3). Then (3) can be combined with a suitable 

fraction in (2) to give an integral. However, in some problems, 

another set of multipliers 𝑃2, 𝑄2 and 𝑅2 are so chosen that the 

fraction 

         (𝑃2𝑑𝑥 + 𝑄2𝑑𝑦 + 𝑅2𝑑𝑧)/(𝑃2𝑃 + 𝑄2𝑄 + 𝑅2𝑅)        …(4) 

is such that its numerator is an exact differential of denominator. 

Fractions (3) and (4) are then combined to give an integral. This 

method may be repeated in some problems to get another integral. 

Sometimes, only one integral is possible by using the rule IV. In 

such cases, the second integral should be obtained by using rule 1 or 

rule 2 or rule 3 of previous articles. 

The following solved examples will illustrate the rule: 

SOLVED EXAMPLES 

Example 1. Solve      (𝑦 + 𝑧)𝑝 + (𝑧 + 𝑥)𝑞 = 𝑥 + 𝑦. 

Solution. Given that  (𝑦 + 𝑧)𝑝 + (𝑧 + 𝑥)𝑞 = 𝑥 + 𝑦                 …(1) 

The Lagrange’s auxiliary equations for (1) are  

                                             
𝑑𝑥

𝑦+𝑧
=

𝑑𝑦

𝑧+𝑥
=

𝑑𝑧

𝑥+𝑦
                   …(2) 

Choosing 1,−1,0 as multipliers, each fraction of (2) is  
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                        =
𝑑𝑥−𝑑𝑦

(𝑦+𝑧)−(𝑧+𝑥)
=

𝑑(𝑥−𝑦)

−(𝑥−𝑦)
                              …(3) 

Again, choosing 0, 1, 1 as multipliers, each fraction of (2) is 

                        =
𝑑𝑦−𝑑𝑧

(𝑧+𝑥)−(𝑥+𝑦)
=

𝑑(𝑦−𝑧)

−(𝑦−𝑧)
                              …(4) 

Finally, choosing 1, 1, 1 as multipliers, each fraction of (2) is  

                        =
𝑑𝑥+𝑑𝑦+𝑑𝑧

(𝑦+𝑧)+(𝑧+𝑥)+(𝑥+𝑦)
=

𝑑(𝑥+𝑦+𝑧)

2(𝑥+𝑦+𝑧)
                 …(5) 

Now, from the fractions (3), (4) and (5), we get 

                               
𝑑(𝑥−𝑦)

−(𝑥−𝑦)
=

𝑑(𝑦−𝑧)

−(𝑦−𝑧)
=

𝑑(𝑥+𝑦+𝑧)

2(𝑥+𝑦+𝑧)
                …(6) 

Taking the first two fraction of (6), we get   
𝑑(𝑥−𝑦)

𝑥−𝑦
=

𝑑(𝑦−𝑧)

𝑦−𝑧
 

Integrating it, we get   log(𝑥 − 𝑦) = log(𝑦 − 𝑧) + log 𝑐1  

or   log{(𝑥 − 𝑦)/(𝑦 − 𝑧)} = log 𝑐1  or   (𝑥 − 𝑦)/(𝑦 − 𝑧) = 𝑐1…(7) 

Taking the first and the third fractions of (6), we have 

                              2
𝑑(𝑥−𝑦)

(𝑥−𝑦)
+

𝑑(𝑥+𝑦+𝑧)

𝑥+𝑦+𝑧
= 0 

Integrating it, we get  2 log(𝑥 − 𝑦) + log(𝑥 + 𝑦 + 𝑧) = log 𝑐2 

or                                 (𝑥 − 𝑦)2(𝑥 + 𝑦 + 𝑧) = 𝑐2                     …(8) 

From (7) and (8), the required general solution is given by 

                  𝜙[(𝑥 − 𝑦)/(𝑦 − 𝑧), (𝑥 − 𝑦)2(𝑥 + 𝑦 + 𝑧)] = 0       …(9) 

where 𝜙 is an arbitrary function. 

Example 2. Solve 𝑦2(𝑥 − 𝑦)𝑝 + 𝑥2(𝑦 − 𝑥)𝑞 = 𝑧(𝑥2 + 𝑦2). 
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Solution. Given that  𝑦2(𝑥 − 𝑦)𝑝 + 𝑥2(𝑦 − 𝑥)𝑞 = 𝑧(𝑥2 + 𝑦2)    …(1) 

The Lagrange’s auxiliary equations for (1) are 

               
𝑑𝑥

𝑦2(𝑥−𝑦)
=

𝑑𝑦

−𝑥2(𝑥−𝑦)
=

𝑑𝑧

𝑧(𝑥2+𝑦2)
                            …(2) 

Taking the first two fractions of (1), we get  

                 𝑥2𝑑𝑥 = −𝑦2𝑑𝑦   or      3𝑥2𝑑𝑥 + 3𝑦2𝑑𝑦 = 0 

Integrating it, we get          𝑥3 + 𝑦3 = 𝑐1                          …(3) 

Choosing 1,−1,0 as multipliers, each fraction of (2) is  

                       =
𝑑𝑥−𝑑𝑦

𝑦2(𝑥−𝑦)+𝑥2(𝑥−𝑦)
=

𝑑𝑥−𝑑𝑦

(𝑥−𝑦)(𝑥2+𝑦2)
               …(4) 

Combining the third fraction of (2) with fraction (4), we get  

                  
𝑑𝑥−𝑑𝑦

(𝑥−𝑦)(𝑥2+𝑦2)
=

𝑑𝑧

𝑧(𝑥2+𝑦2)
  or    

𝑑(𝑥−𝑦)

𝑥−𝑦
−

𝑑𝑧

𝑧
= 0 

Integrating it, we get   log(𝑥 − 𝑦) − log 𝑧 = log 𝑐2 

or                     log {
(𝑥−𝑦)

𝑧
} = log 𝑐2   or   (𝑥 − 𝑦)/𝑧 = 𝑐2         …(5) 

From (4) and (5), the required solution is given by 

                                       𝜙[𝑥3 + 𝑦3, (𝑥 − 𝑦)/𝑧] = 0                 …(6) 

where 𝜙 is an arbitrary function. 

Example 3. Solve(𝑥2 − 𝑦2 − 𝑦𝑧)𝑝 + (𝑥2 − 𝑦2 − 𝑧𝑥)𝑞 = 𝑧(𝑥 − 𝑦) 

Solution. Given partial differential equation is 

              (𝑥2 − 𝑦2 − 𝑦𝑧)𝑝 + (𝑥2 − 𝑦2 − 𝑧𝑥)𝑞 = 𝑧(𝑥 − 𝑦)      …(1) 

The Lagrange’s auxiliary equations for (1) are 
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𝑑𝑥

𝑥2−𝑦2−𝑦𝑧
=

𝑑𝑦

𝑥2−𝑦2−𝑧𝑥
=

𝑑𝑧

𝑧(𝑥−𝑦)
                            …(2) 

Choosing 1,−1,0 as multipliers, each fraction of (2) is  

             =
𝑑𝑥−𝑑𝑦

(𝑥2−𝑦2−𝑦𝑧)−(𝑥2−𝑦2−𝑧𝑥)
=

𝑑𝑥−𝑑𝑦

𝑧(𝑥−𝑦)
                        …(3) 

Choosing 𝑥,−𝑦, 0 as multipliers, each fraction of (2) is  

             =
𝑥𝑑𝑥−𝑦𝑑𝑦

𝑥(𝑥2−𝑦2−𝑦𝑧)−(𝑥2−𝑦2−𝑧𝑥)
=

𝑥𝑑𝑥−𝑦𝑑𝑦

(𝑥−𝑦)(𝑥2−𝑦2)
             …(4) 

From the last fractions of (2), (3) and (4), we have  

𝑑𝑥

𝑧(𝑥−𝑦)
=

𝑑𝑥−𝑑𝑦

𝑧(𝑥−𝑦)
=

𝑥𝑑𝑥−𝑦𝑑𝑦

(𝑥−𝑦)(𝑥2−𝑦2)
   or   

𝑑𝑧

𝑧
=

𝑑𝑥−𝑑𝑦

𝑧
=

2𝑥𝑑𝑥−2𝑦𝑑𝑦

2(𝑥2−𝑦2)
   …(5) 

Taking the first two fractions of (5), we have 

                𝑑𝑧 = 𝑑𝑥 − 𝑑𝑦     so that     𝑧 − 𝑥 + 𝑦 = 𝑐1                …(6) 

Again, taking the first and third fractions of (5), we have  

                    𝑑(𝑥2 − 𝑦2)/(𝑥2 − 𝑦2) − (2/𝑧)𝑑𝑧 = 0        …(7) 

Integrating it, we get   log(𝑥2 − 𝑦2) − 2 log 𝑧 = log 𝑐2 

or                log (
𝑥2−𝑦2

𝑧2 ) = log 𝑐2  or   (𝑥2 − 𝑦2)/𝑧2 = 𝑐2        …(8) 

From (6) and (8), the required solution is given by 

                 𝜙[𝑧 − 𝑥 + 𝑦, (𝑥2 − 𝑦2)/𝑧2] = 0                     …(9) 

where 𝜙 is an arbitrary function. 

Example 4. Solve  cos(𝑥 + 𝑦)𝑝 + sin(𝑥 + 𝑦) 𝑞 = 𝑧. 

Solution. Given that   cos(𝑥 + 𝑦) 𝑝 + sin(𝑥 + 𝑦)𝑞 = 𝑧           …(1) 

The Lagrange’s auxiliary equations for (1) are 
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𝑑𝑥

cos(𝑥+𝑦)
=

𝑑𝑦

sin(𝑥+𝑦)
=

𝑑𝑧

𝑧
                            …(2) 

Choosing 1,1,0 as multipliers, each fraction of (2) is equal to 

                  =
𝑑𝑥+𝑑𝑦

cos(𝑥+𝑦)+sin(𝑥+𝑦)
=

𝑑(𝑥+𝑦)

cos(𝑥+𝑦)+sin(𝑥+𝑦)
           …(3) 

Choosing 1,−1,0 as multipliers, each fraction of (2) is  

                  =
𝑑𝑥−𝑑𝑦

cos(𝑥+𝑦)−sin(𝑥+𝑦)
=

𝑑(𝑥−𝑦)

cos(𝑥+𝑦)−sin(𝑥+𝑦)
           …(4) 

From the last fractions of (2), (3) and from (4), we get  

              
𝑑𝑧

𝑧
=

𝑑(𝑥+𝑦)

cos(𝑥+𝑦)+sin(𝑥+𝑦)
=

𝑑(𝑥−𝑦)

cos(𝑥+𝑦)−sin(𝑥+𝑦)
          …(5) 

Taking the first two fractions of (5), we have  

             
𝑑𝑧

𝑧
=

𝑑(𝑥+𝑦)

cos(𝑥+𝑦)+sin(𝑥+𝑦)
                                           …(6) 

Putting 𝑥 + 𝑦 = 𝑡    so that   𝑑(𝑥 + 𝑦) = 𝑑𝑡, (6) reduces to  

                      
𝑑𝑧

𝑧
=

𝑑𝑡

cos 𝑡+sin 𝑡
=

𝑑𝑡

√2{(
1

√2
) cos 𝑡+(

1

√2
) sin 𝑡}

 

                          =
𝑑𝑡

√2{sin(
𝜋

4
) cos 𝑡+cos(

𝜋

4
) sin 𝑡}

=
𝑑𝑡

√2 sin(𝑡+𝜋/4)
  

Thus, we have       (√2/𝑧)𝑑𝑧 = 𝑐𝑜𝑠𝑒𝑐 (𝑡 + 𝜋/4)𝑑𝑡 

Integrating it, we get   √2 log 𝑧 = log tan
1

2
(𝑡 +

𝜋

4
) + log 𝑐1 

or   𝑧√2 = 𝑐1 tan (
𝑡

2
+

𝜋

8
) or 𝑧√2 cot (

𝑥+𝑦

2
+

𝜋

8
) = 𝑐1, as  𝑡 = 𝑥 + 𝑦 …(7) 

Taking the last two fractions of (5), we have   

                    𝑑(𝑥 − 𝑦) =
cos(𝑥+𝑦)−sin(𝑥+𝑦)

cos(𝑥+𝑦)+sin(𝑥+𝑦)
𝑑(𝑥 + 𝑦)         …(8) 
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Putting 𝑥 + 𝑦 = 𝑡 so that 𝑑(𝑥 + 𝑦) = 𝑑𝑡, (7) reduces to  

     𝑑(𝑥 − 𝑦) =
cos 𝑡−sin 𝑡

cos 𝑡+sin 𝑡
𝑑𝑡   so that   𝑥 − 𝑦 = log(sin 𝑡 + cos 𝑡) − log 𝑐2 

or   (sin 𝑡 + cos 𝑡)/𝑐2 = 𝑒𝑥−𝑦   or   𝑒−(𝑥−𝑦)(sin 𝑡 + cos 𝑡) = 𝑐2 

or     𝑒𝑦−𝑥[sin(𝑥 + 𝑦) + cos(𝑥 + 𝑦)] = 𝑐2, as 𝑡 = 𝑥 + 𝑦         …(9) 

From (7) and (9), the required general solution is given by  

 𝜙 [𝑧√2 cot (
𝑥+𝑦

2
+

𝜋

8
) , 𝑒𝑦−𝑥{sin(𝑥 + 𝑦) + cos(𝑥 + 𝑦)}] = 0 …(10) 

where 𝜙 is an arbitrary function. 

Example 5. Solve  (𝑥3 + 3𝑥𝑦2)𝑝 + (𝑦3 + 3𝑥2𝑦)𝑞 = 2𝑧(𝑥2 + 𝑦2). 

Solution. Given partial differential equation is 

          (𝑥3 + 3𝑥𝑦2)𝑝 + (𝑦3 + 3𝑥2𝑦)𝑞 = 2𝑧(𝑥2 + 𝑦2)             …(1) 

The Lagrange’s auxiliary equations for (1) are  

                       
𝑑𝑥

𝑥3+3𝑥𝑦2 =
𝑑𝑦

𝑦3+3𝑥2𝑦
=

𝑑𝑧

2𝑧(𝑥2+𝑦2)
                   …(2) 

Choosing 1,1,0 as multipliers, each fraction of (2) is  

                      =
𝑑𝑥+𝑑𝑦

𝑥3+3𝑥𝑦2+3𝑥2𝑦+𝑦3
=

𝑑(𝑥+𝑦)

(𝑥+𝑦)3
                        …(3) 

Choosing 1,−1,0 as multipliers, each fraction of (2) is  

                       =
𝑑𝑥−𝑑𝑦

𝑥3+3𝑥𝑦2−𝑦3−3𝑥2𝑦
=

𝑑(𝑥−𝑦)

(𝑥−𝑦)3
                       …(4) 

From the last fractions of (3) and (4), we get  

                      (𝑥 + 𝑦)−3𝑑(𝑥 + 𝑦) = (𝑥 − 𝑦)−3𝑑(𝑥 − 𝑦) 

or          𝑢−3𝑑𝑢 − 𝑣−3𝑑𝑣 = 0, on putting 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥 − 𝑦 
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Integrating it, we get               𝑣−2 − 𝑢−2 = 𝑐1 

or  (𝑥 − 𝑦)−2 − (𝑥 + 𝑦)−2 = 𝑐1, as 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥 − 𝑦 …(5) 

Choosing 1/𝑥, 1/𝑦, 0 as multipliers, each fraction of (2) is  

    =
(1/𝑥)𝑑𝑥+(1/𝑦)𝑑𝑦

(1/𝑥)×(𝑥3+3𝑥𝑦2)+(1/𝑦)×(𝑦3+3𝑥2𝑦)
=

(1/𝑥)𝑑𝑥+(1/𝑦)𝑑𝑦

4(𝑥2+𝑦2)
     …(6) 

Combining the last fraction of (2) with fraction (6), we have 

     
𝑑𝑧

2𝑧(𝑥2+𝑦2)
=

(1/𝑥)𝑑𝑥+(1/𝑦)𝑑𝑦

4(𝑥2+𝑦2)
   or   

𝑑𝑥

𝑥
+

𝑑𝑦

𝑦
− 2

𝑑𝑧

𝑧
= 0 

Integrating it, we get      log 𝑥 + log 𝑦 − 2 log 𝑧 = log 𝑐2 

or                      log (
𝑥𝑦

𝑧2) = log 𝑐2   or     𝑥𝑦/𝑧2 = 𝑐2                 …(7) 

From (5) and (7), the required solution is given by  

                   𝜙[(𝑥 − 𝑦)−2 − (𝑥 + 𝑦)−2, (𝑥𝑦)/𝑧2] = 0               …(8) 

where 𝜙 is an arbitrary function. 

 Example 6. Solve          𝑝 + 𝑞 = 𝑥 + 𝑦 + 𝑧. 

Solution. Given that       𝑝 + 𝑞 = 𝑥 + 𝑦 + 𝑧                              …(1) 

The Lagrange’s auxiliary equations for (1) are  

                                     
𝑑𝑥

1
=

𝑑𝑦

1
=

𝑑𝑧

𝑥+𝑦+𝑧
                           …(2) 

Taking the first two fractions of (2), we get  

            𝑑𝑥 − 𝑑𝑦 = 0       so that           𝑥 − 𝑦 = 𝑐1                    …(3) 

Choosing 1,1,1 as multipliers, each fraction of (2) is  

                           =
𝑑𝑥+𝑑𝑦+𝑑𝑧

1+1+(𝑥+𝑦+𝑧)
=

𝑑(2+𝑥+𝑦+𝑧)

2+𝑥+𝑦+𝑧
                            …(4) 



64 
 

Combining first fraction of (2) with second fraction of (4), we get 

                 𝑑(2 + 𝑥 + 𝑦 + 𝑧)/(2 + 𝑥 + 𝑦 + 𝑧) = 𝑑𝑥 

Integrating it, we have    log(2 + 𝑥 + 𝑦 + 𝑧) − log 𝑐2 = 𝑥 

or    (2 + 𝑥 + 𝑦 + 𝑧)/𝑐2 = 𝑒𝑥 or  (2 + 𝑥 + 𝑦 + 𝑧)𝑒−𝑥 = 𝑐2    …(5) 

From (3) and (5), the required general solution is given by 

                    𝜙[𝑥 − 𝑦, (2 + 𝑥 + 𝑦 + 𝑧)𝑒−𝑥] = 0                        …(6) 

where 𝜙 is an arbitrary function. 

Example 7. Solve the PDE (2𝑥2 + 𝑦2 + 𝑧2 − 2𝑦𝑧 − 𝑧𝑥 − 𝑥𝑦)𝑝 + 

(𝑥2 + 2𝑦2 + 𝑧2 − 𝑦𝑧 − 2𝑧𝑥 − 𝑥𝑦)𝑞 = 𝑥2 + 𝑦2 + 2𝑧2 − 𝑦𝑧 − 𝑧𝑥 − 2𝑥𝑦. 

Solution. Given partial differential equation  can be written as  

                                     𝑃𝑝 + 𝑄𝑞 = 𝑅                                         …(1) 

where        𝑃 = 2𝑥2 + 𝑦2 + 𝑧2 − 2𝑦𝑧 − 𝑧𝑥 − 𝑥𝑦, 

                 𝑄 = 𝑥2 + 2𝑦2 + 𝑧2 − 𝑦𝑧 − 2𝑧𝑥 − 𝑥𝑦, 

and           𝑅 = 𝑥2 + 𝑦2 + 2𝑧2 − 𝑦𝑧 − 𝑧𝑥 − 2𝑥𝑦    

The Lagrange’s auxiliary equations for (1) are 

               
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
 , which can also be written as given below: 

     
𝑑𝑥

2𝑥2+𝑦2+𝑧2−2𝑦𝑧−𝑧𝑥−𝑥𝑦
=

𝑑𝑦

𝑥2+2𝑦2+𝑧2−𝑦𝑧−2𝑧𝑥−𝑥𝑦
=

𝑑𝑧

𝑥2+𝑦2+2𝑧2−𝑦𝑧−𝑧𝑥−2𝑥𝑦
 

                                                                                                    …(2) 

Choosing 1,−1,0; 0,1, −1 and −1,0,1 as multipliers in turn, 

each fraction of (2) is equal to 

           =
𝑑𝑥−𝑑𝑦

𝑥2−𝑦2−𝑦𝑧+𝑧𝑥
=

𝑑𝑦−𝑑𝑧

𝑦2−𝑧2−𝑧𝑥+𝑥𝑦
=

𝑑𝑧−𝑑𝑥

𝑧2−𝑥2−𝑥𝑦+𝑦𝑧
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or                     
𝑑𝑥−𝑑𝑦

(𝑥−𝑦)(𝑥+𝑦+𝑧)
=

𝑑𝑦−𝑑𝑧

(𝑦−𝑧)(𝑥+𝑦+𝑧)
=

𝑑𝑧−𝑑𝑥

(𝑧−𝑥)(𝑥+𝑦+𝑧)
       …(3) 

Taking the first two fractions of (3), we have  

                                 
𝑑(𝑥−𝑦)

(𝑥−𝑦)
−

𝑑(𝑦−𝑧)

(𝑦−𝑧)
= 0 

Integrating it, we get  log(𝑥 − 𝑦) − log(𝑦 − 𝑧) = log 𝑐1 

   or                                     (𝑥 − 𝑦)/(𝑦 − 𝑧) = 𝑐1                     …(4) 

Taking the last two fractions of (3), we get  

                                   
𝑑(𝑦−𝑧)

(𝑦−𝑧)
−

𝑑(𝑧−𝑥)

(𝑧−𝑥)
= 0 

Integrating it, we get   log(𝑦 − 𝑧) − log(𝑧 − 𝑥) = log 𝑐2 

   or                                       (𝑦 − 𝑧)/(𝑧 − 𝑥) = 𝑐2                    …(5) 

From (4) and (5), the required general solution is given by  

                    𝜙[(𝑥 − 𝑦)/(𝑦 − 𝑧), (𝑦 − 𝑧)/(𝑧 − 𝑥)] = 0            …(6) 

where 𝜙 is an arbitrary function. 

Example 8. Solve the following partial differential equation: 

{𝑚𝑦(𝑥 + 𝑦) − 𝑛𝑧2} (
𝜕𝑧

𝜕𝑥
) − {𝑙𝑥(𝑥 + 𝑦) − 𝑛𝑧2} (

𝜕𝑧

𝜕𝑦
) = (𝑙𝑥 − 𝑚𝑦)𝑧  

Solution. The given partial differential equation may be written as 

  {𝑚𝑦(𝑥 + 𝑦) − 𝑛𝑧2}𝑝 − {𝑙𝑥(𝑥 + 𝑦) − 𝑛𝑧2}𝑞 = (𝑙𝑥 − 𝑚𝑦)𝑧  …(1) 

The Lagrange’s auxiliary equations for (1) are  

            
𝑑𝑥

𝑚𝑦(𝑥+𝑦)−𝑛𝑧2
=

𝑑𝑦

−𝑙𝑥(𝑥+𝑦)+𝑛𝑧2
=

𝑑𝑧

(𝑙𝑥−𝑚𝑦)𝑧
                …(2) 

Taking 1, 1 and 0 as multipliers, each fraction of (2) is  
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                       =
𝑑𝑥+𝑑𝑦

𝑚𝑦(𝑥+𝑦)−𝑙𝑥(𝑥+𝑦)
=

𝑑𝑥+𝑑𝑦

(𝑚𝑦−𝑙𝑥)(𝑥+𝑦)
                       …(3) 

Now, from the last fractions of (2) and (3), we have 

              
𝑑𝑥+𝑑𝑦

(𝑚𝑦−𝑙𝑥)(𝑥+𝑦)
=

𝑑𝑧

−(𝑚𝑦−𝑙𝑥)𝑧
  or   

𝑑(𝑥+𝑦)

𝑥+𝑦
= −

𝑑𝑧

𝑧
 

Integrating it, we get    log(𝑥 + 𝑦) = − log 𝑧 + log 𝑐1 

or          (𝑥 + 𝑦)𝑧 = 𝑐1      or     𝑥𝑦 + 𝑦𝑧 = 𝑐1                           …(4) 

Taking  𝑙𝑥,𝑚𝑦, 𝑛𝑧 as multipliers, each fraction of (2) is  

  
𝑙𝑥𝑑𝑥+𝑚𝑦𝑑𝑦+𝑛𝑧𝑑𝑧

𝑙𝑥 𝑚𝑦(𝑥+𝑦)−𝑙𝑥𝑛𝑧2−𝑚𝑦 𝑙𝑥(𝑥+𝑦)+𝑚𝑦 𝑛𝑧2+𝑛𝑧2(𝑙𝑥−𝑚𝑦)
=

𝑙𝑥 𝑑𝑥+𝑚𝑦 𝑑𝑦+𝑛𝑧 𝑑𝑧

0
 

∴  2𝑙𝑥 𝑑𝑥 + 2𝑚𝑦 𝑑𝑦 + 2𝑛𝑧 𝑑𝑧 = 0  so that 𝑙𝑥2 + 𝑚𝑦2 + 𝑛𝑧2 = 𝑐2 …(5) 

From (4) and (5), the required solution is  given by 

                𝜙(𝑥𝑦 + 𝑦𝑧, 𝑙𝑥2 + 𝑚𝑦2 + 𝑛𝑧2) = 0                  …(6) 

where 𝜙 is an arbitrary function. 

EXERCISE 2(D) 

Solve the following partial differential equations: 

1. (𝑦2 + 𝑦𝑧 + 𝑧2)𝑝 + (𝑧2 + 𝑧𝑥 + 𝑥2)𝑞 = 𝑥2 + 𝑥𝑦 + 𝑦2 

2. 𝑥2𝑝 + 𝑦2𝑞 = (𝑥 + 𝑦)𝑧 

3. 𝑥(𝑧 − 2𝑦2) = (𝑧 − 𝑦𝑞)(𝑧 − 𝑦2 − 2𝑥3) 

4. (𝑥2 + 𝑦2)𝑝 + 2𝑥𝑦𝑞 = (𝑧 + 𝑦) 

5. {𝑦(𝑥 + 𝑦) + 𝑎𝑧}𝑝 + {𝑥(𝑥 + 𝑦) − 𝑎𝑧}𝑞 = 𝑧(𝑥 + 𝑦) 

ANSWERS 

1. 𝜙 (
𝑦−𝑧

𝑥−𝑦
,
𝑥−𝑧

𝑥−𝑦
) = 0 2. 𝜙 (

𝑥𝑦

𝑧
,
𝑥−𝑦

𝑧
) = 0 3. 𝜙 (

𝑦

𝑧
,
𝑧−𝑦2+𝑥3

𝑥
) = 0 
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4. 𝜙 (
𝑥+𝑦

𝑧
,

𝑦

𝑥2−𝑦2) = 0  5. 𝜙 (
𝑥+𝑦

𝑧
, 𝑥2 − 𝑦2 − 2𝑎𝑧) 

2.10 Surfaces and Normals in Three Dimensions 

Let Ω be a domain in three-dimensional space R3 and let 

𝜙(𝑥, 𝑦, 𝑧) be a scalar point function, then the vector valued function 

grad ϕ may be written as  

                        grad 𝜙 = ∇𝜙 = (
𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
,
𝜕𝜙

𝜕𝑧
)                     …(1) 

If we assume that the partial derivatives of ϕ do not vanish 

simultaneously at any point, then the set of points (𝑥, 𝑦, 𝑧) in Ω, 

satisfying the equation 

                                   𝜙(𝑥, 𝑦, 𝑧) = 𝐶                                 …(2) 

is a surface in Ω for some constant C. This surface is called a level 

or equipotential surface of ϕ. If (𝑥0, 𝑦0, 𝑧0) is a given point in Ω, 

then by taking 𝜙(𝑥0, 𝑦0, 𝑧0) = 𝐶, we get an equation of the form  

                                       𝜙(𝑥, 𝑦, 𝑧) = 𝜙(𝑥0, 𝑦0, 𝑧0)                    …(3) 

which represents a surface in the domain Ω of three dimensional 

space passing through the point (𝑥0, 𝑦0, 𝑧0). Here, equation (2) 

represents a one-parameter family of surface in the domain Ω. The 

value of grad ϕ is a vector, normal to the level surface. Now, one 

may ask, if it is possible to solve equation (2) for z in terms of x and 

y. To answer this question, let us consider a set of relations of the 

form 

                𝑥 = 𝑓1(𝑢, 𝑣),       𝑦 = 𝑓2(𝑢, 𝑣),   𝑧 = 𝑓3(𝑢, 𝑣)            …(4) 

Here, for every pair of values of u and v, we will have three 

numbers x, y and z, which represent a point in space. However, it 

may be noted that every point in space need not correspond to a pair 

(u, v). But if the Jacobian 
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𝜕(𝑓1,𝑓2)

𝜕(𝑢,𝑣)
≠ 0                                            …(5) 

then, the first two equations of (4) can be solved and u and v can be 

expressed as functions of x and y like  

                       𝑢 = 𝜆(𝑥, 𝑦) and 𝑣 = 𝜇(𝑥, 𝑦)                               …(6) 

Thus, the third relation of equation (4) gives the value of z in 

the form 

                       𝑧 = 𝑓3[𝜆(𝑥, 𝑦), 𝜇(𝑥, 𝑦)]                                       …(7) 

This relation is of course, a functional relation between the  

co-ordinates x, y and z as in equation (2). Hence, any point (x, y, z) 

obtained from equation (4) always lie on a fixed surface. The set of 

equations (4) are called as the parametric equations of a surface. 

It may be noted that the parametric equations of a surface need not 

be unique, which can be seen in the following example: 

The following two sets of parametric equations 

  𝑥 = 𝑟 sin 𝜃 cos𝜙 ,      𝑦 = 𝑟 sin 𝜃 sin𝜙 , 𝑧 = 𝑟 cos 𝜃     (set I) 

and     𝑥 = 𝑟
(1−𝜙2)

(1+𝜙2)
cos 𝜃,    𝑦 = 𝑟

(1−𝜙2)

(1+𝜙2)
sin 𝜃, 𝑧 =

2𝑟𝜙

1+𝜙2       (set II)  

represent the same surface 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2, which is a sphere.  

Now, let us take the surface whose equation is of the form  

                                𝑧 = 𝑓(𝑥, 𝑦)                                        …(8) 

The above equation may also be written in the form 

                              𝜙 ≡ 𝑓(𝑥, 𝑦) − 𝑧 = 0                           …(9) 

Differentiating it partially w.r.t. x and y, we obtain  



69 
 

               
𝜕𝜙

𝜕𝑥
+

𝜕𝜙

𝜕𝑧

𝜕𝑧

𝜕𝑥
= 0 and  

𝜕𝜙

𝜕𝑦
+

𝜕𝜙

𝜕𝑧

𝜕𝑧

𝜕𝑦
= 0                 …(10) 

form which on using (9), we get 
𝜕𝑧

𝜕𝑥
= −

𝜕𝜙 𝜕𝑥⁄

𝜕𝜙 𝜕𝑧⁄
=

𝜕𝜙

𝜕𝑥
 i.e., 

𝜕𝜙

𝜕𝑥
= 𝑝 

Thus, we have                    
𝜕𝜙

𝜕𝑥
= 𝑝, 

𝜕𝜙

𝜕𝑦
= 𝑞, 

𝜕𝜙

𝜕𝑧
= −1     …(11) 

Hence, the direction cosines of the normal to the surface at a 

point P (x ,y, z) are given by  

                (
𝑝

√𝑝2+𝑞2+1
,

𝑞

√𝑝2+𝑞2+1
,

−1

√𝑝2+𝑞2+1
)                      …(12) 

Now, returning to the level surface given by equation (2), it is 

easy to write the equation of the tangent plane to the level surface at 

a point (𝑥0, 𝑦0, 𝑧0) as  

           (𝑥 − 𝑥0) [
𝜕𝐹

𝜕𝑥
]
(𝑥0,𝑦0,𝑧0)

+ (𝑦 − 𝑦0) [
𝜕𝐹

𝜕𝑦
]
(𝑥0,𝑦0,𝑧0)

+ (𝑧 − 𝑧0) [
𝜕𝐹

𝜕𝑧
]
(𝑥0,𝑦0,𝑧0)

= 0  

2.11 Curve in Three Dimensions: Intersection of Two Surfaces 

A curve in three-dimensional space R3 can be described in 

terms of parametric equations. Suppose 𝑟  denotes the position 

vector of a point on a curve C, then the vector equation of the curve 

C may be written as 

                            𝑟 = 𝐹 (𝑡)      ,         𝑡 ∈ 𝐼                         …(1) 

where I is some interval on the real axis. In component form, 

equation (1) can be written as  

                              𝑥 = 𝑓1(𝑡), 𝑦 = 𝑓2(𝑡),   𝑧 = 𝑓3(𝑡)                 …(2) 

where 𝑟 = (𝑥, 𝑦, 𝑧) and 𝐹 (𝑡) = [𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡) ]. 

Further, we assume that  
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            (
𝑑𝑓1(𝑡)

𝑑𝑡
,
𝑑𝑓2(𝑡)

𝑑𝑡
,
𝑑𝑓3(𝑡)

𝑑𝑡
) ≠ (0,0,0)                             …(3) 

This non-vanishing vector is called as the tangent vector to 

the curve C at the point (x ,y, z) or at [𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡) ] to the 

curve C. 

Another way of describing a curve in three-dimensional space 

R3 is by using the fact that the intersection of the surfaces gives rise 

to a curve. 

Let      𝜙1(𝑥, 𝑦, 𝑧) = 𝐶1     and     𝜙2(𝑥, 𝑦, 𝑧) = 𝐶2           …(4)                                

are two surfaces. Their intersection, if not empty, is always a curve, 

provided grad ϕ1 and grad ϕ2 are not collinear at any point of the 

domain  Ω . In other words, the intersection of  surfaces given by 

equation (4) is a curve if  

               grad  𝜙1(𝑥, 𝑦, 𝑧). grad 𝜙2(𝑥, 𝑦, 𝑧) ≠ (0,0,0)               …(5) 

for every (x, y, z) ∈ Ω. For various values of C1 and C2, equation (4) 

describes different curves. The totality of these curves is called a 

two parameter family of curves. Here, C1 and C2 are referred to as 

parameters of this family.  

2.12 Tangent Line: Intersection of Two Tangent Planes 

Let us consider two surfaces denoted by S1 and S2 whose 

equations are given by 

                                       𝐹(𝑥, 𝑦, 𝑧) = 0                                      …(1) 

 and                                𝐺(𝑥, 𝑦, 𝑧) = 0                                       …(2) 

Then, the equation of the tangent plane 𝜋1 to the surface S1 at 

a point 𝑃(𝑥0, 𝑦0, 𝑧0) is given by  

       (𝑥 − 𝑥0)
𝜕𝐹

𝜕𝑥
+ (𝑦 − 𝑦0)

𝜕𝐹

𝜕𝑦
+ (𝑧 − 𝑧0)

𝜕𝐹

𝜕𝑧
= 0            …(3) 
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where   
𝜕𝐹

𝜕𝑥
,
𝜕𝐹

𝜕𝑦
  and  

𝜕𝐹

𝜕𝑧
 are all evaluated at the point 𝑃(𝑥0, 𝑦0, 𝑧0). 

Similarly, the equation of the tangent plane 𝜋2 to the surface 

S2 at the point 𝑃(𝑥0, 𝑦0, 𝑧0) is given by 

        (𝑥 − 𝑥0)
𝜕𝐺

𝜕𝑥
+ (𝑦 − 𝑦0)

𝜕𝐺

𝜕𝑦
+ (𝑧 − 𝑧0)

𝜕𝐺

𝜕𝑧
= 0           …(4) 

where the partial derivatives 
𝜕𝐺

𝜕𝑥
,
𝜕𝐺

𝜕𝑦
 and 

𝜕𝐺

𝜕𝑧
 are all evaluated at the 

point 𝑃(𝑥0, 𝑦0, 𝑧0).  

The intersection of tangent planes is known as the tangent line 

at 𝑃(𝑥0, 𝑦0, 𝑧0). Thus, the tangent line L to the curve C at the point 

𝑃(𝑥0, 𝑦0, 𝑧0) is the intersection of the two surfaces S1 and S2. 

 

Figure 2.2:  Tangent Planes and Tangent Line 

The equation of the tangent line L to the curve C at the point 

𝑃(𝑥0, 𝑦0, 𝑧0) is obtained from (3) and (4), which is given below:   

                  
(𝑥−𝑥0)

𝜕𝐹

𝜕𝑦

𝜕𝐺

𝜕𝑧
−

𝜕𝐹

𝜕𝑧

𝜕𝐺

𝜕𝑦

=
(𝑦−𝑦0)

𝜕𝐹

𝜕𝑧

𝜕𝐺

𝜕𝑥
−

𝜕𝐹

𝜕𝑥

𝜕𝐺

𝜕𝑧

=
(𝑧−𝑧0)

𝜕𝐹

𝜕𝑥

𝜕𝐺

𝜕𝑦
−

𝜕𝐹

𝜕𝑦

𝜕𝐺

𝜕𝑥

                   

or                                 
(𝑥−𝑥0)
𝜕(𝐹,𝐺)

𝜕(𝑦,𝑧)

=
(𝑦−𝑦0)
𝜕(𝐹,𝐺)

𝜕(𝑧,𝑥)

=
(𝑧−𝑧0)
𝜕(𝐹,𝐺)

𝜕(𝑥,𝑦)

                       …(5)    
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Therefore, the direction cosines of the tangent line L are 

proportional to                  [
𝜕(𝐹,𝐺)

𝜕(𝑦,𝑧)
,
𝜕(𝐹,𝐺)

𝜕(𝑧,𝑥)
,
𝜕(𝐹,𝐺)

𝜕(𝑥,𝑦)
]                         …(6) 

2.13 Integral Surfaces Passing Through a Given Curve 

In the previous article, we have obtained general integral of 

the partial differential equation    𝑃𝑝 + 𝑄𝑞 = 𝑅.  

We shall now present two methods for finding the integral 

surface which passes through a given curve 

2.13.1 First Method for Finding Integral Surface  

Let                        𝑃𝑝 + 𝑄𝑞 = 𝑅                                        …(1) 

be the given PDE. Let its Lagrange’s auxiliary equations give us the 

following two independent solutions 

                 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1     and    𝑣(𝑥, 𝑦, 𝑧) = 𝑐2                     …(2) 

Suppose we wish to obtain the integral surface which passes 

through the curve whose equation in parametric form is given by 

                    𝑥 = 𝑥(𝑡),  𝑦 = 𝑦(𝑡), and  𝑧 = 𝑧(𝑡)                        …(3) 

where t is a parameter. Then (2) may be expressed as 

    𝑢[𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] = 𝑐1  and   𝑣[𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] = 𝑐2         …(4) 

We now eliminate the parameter t from the equations of (4) 

and get a relation involving c1 and c2. Finally, we replace c1 and c2 

with help of (2) and obtain the required integral surface. 

2.13.2 Second Method for Finding Integral Surface  

Let                         𝑃𝑝 + 𝑄𝑞 = 𝑅                                       …(1) 

be the given PDE. Let its Lagrange’s auxiliary equations give us the 

following two independent integrals: 
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                      𝑢(𝑥, 𝑦, 𝑧) = 𝑐1      and     𝑣(𝑥, 𝑦, 𝑧) = 𝑐2              …(2) 

Suppose we wish to obtain the integral surface passing 

through the curve which is determined by the following two 

equations: 

          𝜙(𝑥, 𝑦, 𝑧) = 0         and     𝜓(𝑥, 𝑦, 𝑧) = 0               …(3) 

We now eliminate 𝑥, 𝑦 and 𝑧 from the two pairs of equations 

of (2) and (3) and obtain a relation between c1 and c2. Finally, we 

replace c1 by 𝑢(𝑥, 𝑦, 𝑧) and c2 by 𝑣(𝑥, 𝑦, 𝑧) in that relation and we 

obtain the desired integral surface. 

2.14 Surfaces Orthogonal to a Given System of Surfaces 

Let                                𝑓(𝑥, 𝑦, 𝑧) = 𝑐                                …(1) 

represents a system or surfaces, where c is a parameter. Suppose we 

wish to obtain a system of surfaces which cut each of (1) at right 

angles. Then the direction ratios of the normal at the point (𝑥, 𝑦, 𝑧) 

to (1) which passes through that point are 
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
 . 

Let the surface                 𝑧 = 𝜙(𝑥, 𝑦)                               …(2) 

cuts each surface of (1) at right angles. Then the normal at (𝑥, 𝑦, 𝑧) 

to (2) has direction ratios  
𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
, −1 i.e., 𝑝, 𝑞, −1. Since normals at 

𝑃(𝑥, 𝑦, 𝑧) to (1) and (2) are at right angles, therefore, we have  

 𝑝 (
𝜕𝑓

𝜕𝑥
) + 𝑞 (

𝜕𝑓

𝜕𝑦
) − (

𝜕𝑓

𝜕𝑧
) = 0     or     𝑝 (

𝜕𝑓

𝜕𝑥
) + 𝑞 (

𝜕𝑓

𝜕𝑦
) = (

𝜕𝑓

𝜕𝑧
)  …(3) 

which is of the form  𝑃𝑝 + 𝑄𝑞 = 𝑅, where 𝑃 =
𝜕𝑓

𝜕𝑥
, 𝑄 =

𝜕𝑓

𝜕𝑦
 and 𝑅 =

𝜕𝑓

𝜕𝑧
 .  

Conversely, we may easily verify that any solution of (3) is 

orthogonal to every surface of (1). 
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2.15 Geometrical Description of Solutions of Lagrange’s 

Equation 𝑷𝒑 + 𝑸𝒒 = 𝑹 and Lagrange’s Auxiliary 

Equations  
𝒅𝒙

𝒑
=

𝒅𝒚

𝒒
=

𝒅𝒛

𝑹
  

Proof. Consider              𝑃𝑝 + 𝑄𝑞 = 𝑅                                      …(1) 

and                                    
𝑑𝑥

𝑝
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                                      …(2) 

where 𝑃, 𝑄 and 𝑅 are functions of x, y and z. 

Let                                      𝑧 = 𝜙(𝑥, 𝑦)                             …(3) 

represents the solution of the Lagrange’s partial differential 

equation (1). Then (3) represents a surface whose normal at any 

point (𝑥, 𝑦, 𝑧) has direction ratios 
𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
, −1 i.e., 𝑝, 𝑞, −1. Also, we 

know that the system of simultaneous equations (2) represent a 

family of curves such that the tangent at any point has direction 

ratios 𝑃, 𝑄, 𝑅. Rewriting (1), we have  

                                𝑃𝑝 + 𝑄𝑞 + 𝑅(−1) = 0                              …(4) 

which shows that the normal to the surface (3) at any point is 

perpendicular to the member of family of curves (2) through that 

point. Hence, the member must touch the surface at that point. 

Since this holds for each point on (3), therefore, we consider that 

the curves (2) lies completely on the surface (3) whose differential 

equation is given by (1). 

2.16 Geometrical Interpretation of  𝑷𝒑 + 𝑸𝒒 = 𝑹  

Here, we show that the surface given by 𝑃𝑝 + 𝑄𝑞 = 𝑅 is 

orthogonal to the surfaces represented by 𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧 = 0. 

We know that the curves whose equations are solutions of  

                              
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
                                        …(1) 
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are orthogonal to the system of the surfaces satisfying 

                                   𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧 = 0                           …(2) 

Again, the curves of (1) lie completely on the surface 

                                𝑃𝑝 + 𝑄𝑞 = 𝑅                                     …(3) 

Hence, we conclude that surfaces represented by (2) and (3) 

are orthogonal. 

SOLVED EXAMPLES 

Example 1. Find the tangent vector at the point (0,1,
𝜋

2
) to the helix 

described by the parametric equations 𝑥 = cos 𝑡 , 𝑦 = sin 𝑡 , 𝑧 = 𝑡.  

Solution. The tangent vector to the helix at (𝑥, 𝑦, 𝑧) is given by  

                           (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) = (− sin 𝑡 , cos 𝑡 , 1) 

We observe that the given point (0,1,
𝜋

2
) corresponds to 𝑡 =

𝜋

2
.   

Therefore, the required tangent vector to the helix is given by 

             (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) = (− sin

𝜋

2
, cos

𝜋

2
, 1) = (−1,0,1). 

Example 2. Find the equation of the tangent line to the space circle 

  𝑥2 + 𝑦2 + 𝑧2 = 1, 𝑥 + 𝑦 + 𝑧 = 0   at the point   (
1

√14
,

2

√14
, −

3

√14
). 

Solution. The space circle is described by the functions: 

                        𝐹(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 1 = 0                   …(1) 

and                  𝐺(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 = 0                                …(2) 

 The equation of the tangent line at the point (𝑥0, 𝑦0, 𝑧0) is  
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(𝑥−𝑥0)
𝜕(𝐹,𝐺)

𝜕(𝑦,𝑧)

=
(𝑦−𝑦0)
𝜕(𝐹,𝐺)

𝜕(𝑧,𝑥)

=
(𝑧−𝑧0)
𝜕(𝐹,𝐺)

𝜕(𝑥,𝑦)

                     …(3) 

where  
𝜕(𝐹,𝐺)

𝜕(𝑦,𝑧)
=

𝜕𝐹

𝜕𝑦

𝜕𝐺

𝜕𝑧
−

𝜕𝐹

𝜕𝑧

𝜕𝐺

𝜕𝑦
= 2𝑦 − 2𝑧 =

4

√14
+

6

√14
=

10

√14
 

           
𝜕(𝐹,𝐺)

𝜕(𝑧,𝑥)
=

𝜕𝐹

𝜕𝑧

𝜕𝐺

𝜕𝑥
−

𝜕𝐹

𝜕𝑥

𝜕𝐺

𝜕𝑧
= 2𝑧 − 2𝑥 = −

6

√14
−

2

√14
= −

8

√14
 

           
𝜕(𝐹,𝐺)

𝜕(𝑥,𝑦)
=

𝜕𝐹

𝜕𝑥

𝜕𝐺

𝜕𝑦
−

𝜕𝐹

𝜕𝑦

𝜕𝐺

𝜕𝑥
= 2𝑥 − 2𝑦 =

2

√14
−

4

√14
= −

2

√14
 

The required equation of the tangent line at the given point 

(
1

√14
,

2

√14
, −

3

√14
) is given by  

                                 
𝑥−1 √14⁄

10 √14⁄
=

𝑦−2 √14⁄

−8 √14⁄
=

𝑧+3 √14⁄

−2 √14⁄
                     …(4) 

Example 3. Find the integral surface of the linear partial differential 

equation 𝑥(𝑥2 + 𝑧)𝑝 − 𝑦(𝑥2 + 𝑧)𝑞 = (𝑥2 − 𝑦2)𝑧 which contains 

the straight line  𝑥 + 𝑦 = 0, 𝑧 = 1. 

Solution. Given  𝑥(𝑥2 + 𝑧)𝑝 − 𝑦(𝑥2 + 𝑧)𝑞 = (𝑥2 − 𝑦2)𝑧      …(1) 

The Lagrange’s auxiliary equations of (1) are  

                 
𝑑𝑥

𝑥(𝑦2+𝑧)
=

𝑑𝑦

−𝑦(𝑥2+𝑧)
=

𝑑𝑧

(𝑥2−𝑦2)𝑧
                           …(2) 

The two independent solutions of (2) may be obtained as 

           𝑢(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 = 𝑐1                                             …(3) 

and              𝑣(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 2𝑧 = 𝑐2                             …(4) 

Taking t as parameter, the given equation of the straight line 

𝑥 + 𝑦 = 0, 𝑧 = 1 can be put in parametric form    

               𝑥 = 𝑡,        𝑦 = −𝑡,         𝑧 = 1                           …(5) 
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Using (5) in (3) and (4), we get  −𝑡2 = 𝑐1  and  2𝑡2 − 2 = 𝑐2  …(6) 

Eliminating t from the equations of (6), we get 

           2(−𝑐1) − 2 = 𝑐2       or       2𝑐1 + 𝑐2 + 2 = 0       …(7) 

Now, putting the values of c1 and c2 from (3) and (4) in (7), 

we get 

                  2𝑥𝑦𝑧 + 𝑥2 + 𝑦2 − 2𝑧 + 2 = 0                       …(8) 

which is the desired integral surface of the given PDE. 

Example 4. Find the equation of the integral surface of the partial 

differential equation 2𝑦(𝑧 − 3)𝑝 + (2𝑥 − 𝑧)𝑞 = 𝑦(2𝑥 − 3) which 

passes through the circle 𝑧 = 0, 𝑥2 + 𝑦2 = 2𝑥. 

Solution. Given that   2𝑦(𝑧 − 3)𝑝 + (2𝑥 − 𝑧)𝑞 = 𝑦(2𝑥 − 3) …(1) 

The Lagrange’s auxiliary equations for (1) are  

                                     
𝑑𝑥

2𝑦(𝑧−3)
=

𝑑𝑦

2𝑥−𝑧
=

𝑑𝑧

𝑦(2𝑥−3)
              …(2) 

Taking the first and third fractions of (3), we get  

                         (2𝑥 − 3)𝑑𝑥 − 2(𝑧 − 3)𝑑𝑧 = 0 

Integrating it, we get   𝑥2 − 3𝑥 − 𝑧2 + 6𝑧 = 𝑐1               …(3) 

Choosing 
1

2
, 𝑦, −1 as multipliers, each fraction of (2) is 

              =
(1/2)𝑑𝑥+𝑦𝑑𝑦−𝑑𝑧

𝑦(𝑧−3)+𝑦(2𝑥−𝑧)−𝑦(2𝑥−3)
=

(1/2)𝑑𝑥+𝑦𝑑𝑦−𝑑𝑧

0
 

Hence    (1/2)𝑑𝑥 + 𝑦𝑑𝑦 − 𝑑𝑧 = 0 or  𝑑𝑥 + 2𝑦𝑑𝑦 − 2𝑑𝑧 = 0 

Integrating it, we get         𝑥 + 𝑦2 − 2𝑧 = 𝑐2                    …(4) 
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Thus, the two independent solutions of (2) are given by (3) 

and (4). 

Now, the parametric equations of given circle are  

                  𝑥 = 𝑡,     𝑦 = (2𝑡 − 𝑡2)1/2, 𝑧 = 0                   …(5) 

Substituting these values of 𝑥, 𝑦 and 𝑧 in (3) and (4), we have  

                  𝑡2 − 3𝑡 = 𝑐1   and      3𝑡 − 𝑡2 = 𝑐2                 …(6) 

Eliminating t from the equations of (6), we get  

                             𝑐1 + 𝑐2 = 0                                           …(7) 

Substituting the values of c1 and c2 from (3) and (4) in (7), the 

desired integral surface is given by 

                  𝑥2 − 3𝑥 − 𝑧2 + 6𝑧 + 𝑥 + 𝑦2 − 2𝑧 = 0 

or                               𝑥2 + 𝑦2 − 𝑧2 − 2𝑥 + 4𝑧 = 0                   …(8) 

Example 5. Find the integral surface of the partial differential 

equation  (𝑥 − 𝑦)𝑝 + (𝑦 − 𝑥 − 𝑧)𝑞 = 𝑧 passing through the circle 

𝑧 = 1, 𝑥2 + 𝑦2 = 1. 

Solution. Given that         (𝑥 − 𝑦)𝑝 + (𝑦 − 𝑥 − 𝑧)𝑞 = 𝑧          …(1) 

The Lagrange’s auxiliary equations for (1) are  

                            
𝑑𝑥

𝑥−𝑦
=

𝑑𝑦

𝑦−𝑥−𝑧
=

𝑑𝑧

𝑧
                                   …(2) 

Choosing 1,1,1 as multipliers, each fraction of (2) is  

               =
𝑑𝑥+𝑑𝑦+𝑑𝑧

𝑥−𝑦+𝑦−𝑥−𝑧+𝑧
=

𝑑𝑥+𝑑𝑦+𝑑𝑧

0
 

∴    𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧 = 0        so that      𝑥 + 𝑦 + 𝑧 = 𝑐1              …(3) 

Taking the last two fractions of (2) and using (3), we get 



79 
 

           
𝑑𝑦

𝑦−(𝑐1−𝑦)
=

𝑑𝑧

𝑧
    or       

2𝑑𝑦

2𝑦−𝑐1
−

2𝑑𝑧

𝑧
= 0 

Integrating it, we get     log(2𝑦 − 𝑐1) − 2 log 𝑧 = log 𝑐2 

           log (
2𝑦−𝑐1

𝑧2 ) = log 𝑐2  or  (2𝑦 − 𝑐1)/𝑧
2 = 𝑐2    

or      (2𝑦 − 𝑥 − 𝑦 − 𝑧)/𝑧2 = 𝑐2   or    (𝑦 − 𝑥 − 𝑧)/𝑧2 = 𝑐2   …(4) 

The equation of the given curve (circle) is     

                                    𝑧 = 1,        𝑥2 + 𝑦2 = 1                         …(5) 

Putting 𝑧 = 1 in (3) and (4), we get 

                   𝑥 + 𝑦 = 𝑐1 − 1    and       𝑦 − 𝑥 = 𝑐2 + 1               …(6) 

But      2(𝑥2 + 𝑦2) = (𝑥 + 𝑦)2 + (𝑥 − 𝑦)2                      …(7) 

Using equations (5) and (6) in (7), we get 

    2 = (𝑐1 − 1)2 + (𝑐2 + 1)2   or   𝑐1
2 + 𝑐2

2 − 2𝑐1 + 2𝑐2 = 0   …(8) 

Putting the values of 𝑐1 and 𝑐2 from (3) and (4) in (8), the 

required integral surface is given by 

          (𝑥 + 𝑦 + 𝑧)2 + (𝑦 − 𝑥 − 𝑧)2/𝑧4 − (𝑥 + 𝑦 + 𝑧) 

                                                      +2(𝑦 − 𝑥 − 𝑧)/𝑧2 = 0 

or          𝑧4(𝑥 + 𝑦 + 𝑧)2 + (𝑦 − 𝑥 − 𝑧)2 

                                    −2𝑧4(𝑥 + 𝑦 + 𝑧) + 2𝑧2(𝑦 − 𝑥 − 𝑧) = 0 

Example 6. Find the equation of integral surface satisfying 4𝑦𝑧𝑝 +
𝑞 + 2𝑦 = 0 and passing through 𝑦2 + 𝑧2 = 1, 𝑥 + 𝑧 = 2. 

Solution. Given that              4𝑦𝑧𝑝 + 𝑞 = −2𝑦                         …(1) 

The equation of the given curve is  
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                               𝑦2 + 𝑧2 = 1,     𝑥 + 𝑧 = 2                  …(2) 

The Lagrange’s auxiliary equations for (1) are    

                             
𝑑𝑥

4𝑦𝑧
=

𝑑𝑦

1
=

𝑑𝑧

−2𝑦
                                      …(3) 

Taking the first and third fractions of (3), we have  

             𝑑𝑥 + 2𝑧𝑑𝑧 = 0   so that  𝑥 + 𝑧2 = 𝑐1                  …(4) 

Taking the last two fractions of (3), we have  

                      𝑑𝑧 + 2𝑦𝑑𝑦 = 0   so that   𝑧 + 𝑦2 = 𝑐2       …(5) 

Adding (4) and (5), we get   (𝑦2 + 𝑧2) + (𝑥 + 𝑧) = 𝑐1 + 𝑐2 

or                                    1 + 2 = 𝑐1 + 𝑐2 , using (2)                 …(6) 

Putting the values of c1 and c2 from (4) and (5) in (6), the 

equation of the required integral surface is given by 

   3 = 𝑥 + 𝑧2 + 𝑧 + 𝑦2       or      𝑦2 + 𝑧2 + 𝑥 + 𝑧 − 3 = 0 

Example 7. Find the surface which intersects the surfaces of the 

system 𝑧(𝑥 + 𝑦) = 𝑐(3𝑧 + 1) orthogonally and which passes 

through the circle 𝑥2 + 𝑦2 = 1, 𝑧 = 1. 

Solution. The equation of the given system of surfaces is 

                                    𝑓(𝑥, 𝑦, 𝑧) ≡
𝑧(𝑥+𝑦)

3𝑧+1
= 𝑐                           …(1) 

∴       
𝜕𝑓

𝜕𝑥
=

𝑧

3𝑧+1
 ,

𝜕𝑓

𝜕𝑦
=

𝑧

3𝑧+1
  ,   

𝜕𝑓

𝜕𝑧
= [

(3𝑧+1)−3𝑧

(3𝑧+1)2
] (𝑥 + 𝑦) =

𝑥+𝑦

(3𝑧+1)2
 

The required orthogonal surface will be the solution of 

             𝑝
𝜕𝑓

𝜕𝑥
+ 𝑞

𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑧
         or        

𝑧𝑝

3𝑧+1
+

𝑧𝑞

3𝑧+1
=

𝑥+𝑦

(3𝑧+1)2
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or                     𝑧(3𝑧 + 1)𝑞 + 𝑧(3𝑧 + 1)𝑞 = 𝑥 + 𝑦                   …(2) 

The Lagrange’s auxiliary equations for (2) are  

                           
𝑑𝑥

𝑧(3𝑧+1)
=

𝑑𝑦

𝑧(3𝑧+1)
=

𝑑𝑧

𝑥+𝑦
                           …(3) 

Taking the first two fractions of (3), we get 𝑑𝑥 − 𝑑𝑦 = 0 

Integrating it, we get          𝑥 − 𝑦 = 𝑐1                              …(4) 

Taking 𝑥, 𝑦, −𝑧(3𝑧 + 1) as multipliers, each fraction of (3) is 

                         = [𝑥𝑑𝑥 + 𝑦𝑑𝑦 − 𝑧(3𝑧 + 1)𝑑𝑧]/0 

∴                                    𝑥𝑑𝑥 + 𝑦𝑑𝑦 − 3𝑧2𝑑𝑧 − 𝑧𝑑𝑧 = 0   

or                             2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 − 6𝑧2𝑑𝑧 − 2𝑧𝑑𝑧 = 0 

Integrating it, we get         𝑥2 + 𝑦2 − 2𝑧3 − 𝑧2 = 𝑐2       …(5) 

Hence, the surface which is orthogonal to (1) is given by 

                 𝑥2 + 𝑦2 − 2𝑧3 − 𝑧2 = 𝜙(𝑥 − 𝑦)                     …(6) 

where 𝜙 is an arbitrary function. 

In order to get the desired surface passing through the circle 

𝑥2 + 𝑦2 = 1, 𝑧 = 1, we must choose 𝜙(𝑥 − 𝑦) = −2.  

Thus, the required particular surface is given by 

                            𝑥2 + 𝑦2 − 2𝑧3 − 𝑧2 = −2 

Example 8. Write down the system of equations for obtaining the 

general equation of surfaces orthogonal to the family given by 

𝑥(𝑥2 + 𝑦2 + 𝑧2) = 𝑐𝑦2. 

Solution. The equation of the given family of surface is  
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          𝑓(𝑥, 𝑦, 𝑧) ≡ 𝑥(𝑥2 + 𝑦2 + 𝑧2)/𝑦2 = 𝑐                    …(1) 

The surfaces orthogonal to the system (1) are the surfaces 

generated by the integral curves of the equations 

  
𝑑𝑥
𝜕𝑓

𝜕𝑥

=
𝑑𝑦
𝜕𝑓

𝜕𝑦

=
𝜕𝑧
𝜕𝑓

𝜕𝑧

  or  
𝑑𝑥

(3𝑥2+𝑦2+𝑧2)/𝑦2 =
𝑑𝑦

−2𝑥(𝑥2+𝑧2)/𝑦3 =
𝑑𝑧

2𝑥/𝑦2𝑧
 

or                          
𝑑𝑥

𝑦(3𝑥2+𝑦2+𝑧2)
=

𝑑𝑦

−2𝑥(𝑥2+𝑧2)
=

𝑑𝑧

2𝑥𝑦𝑧
                  …(2) 

Taking 𝑥, 𝑦, 𝑧 as multipliers, each fraction of (2) is  

        =
𝑥𝑑𝑥+𝑦𝑑𝑦+𝑧𝑑𝑧

𝑥𝑦(3𝑥2+𝑦2+𝑧2)−2𝑥(𝑥2+𝑧2)+2𝑥𝑦𝑧
=

𝑥𝑑𝑥+𝑦𝑑𝑦+𝑧𝑑𝑧

𝑥𝑦(𝑥2+𝑦2+𝑧2)
        …(3) 

Combining this fraction (3) with the last fraction of (2), we get 

 
𝑥𝑑𝑥+𝑦𝑑𝑦+𝑧𝑑𝑧

𝑥𝑦(𝑥2+𝑦2+𝑧2)
=

𝑑𝑧

2𝑥𝑦𝑧
            or      

2𝑥𝑑𝑥+2𝑦𝑑𝑦+2𝑧𝑑𝑧

𝑥2+𝑦2+𝑧2 =
𝑑𝑧

𝑧
 

Integrating it, we get    log(𝑥2 + 𝑦2 + 𝑧2) = log 𝑧 + log 𝑐1 

or       𝑥2 + 𝑦2 + 𝑧2 = 𝑐1𝑧    or      (𝑥2 + 𝑦2 + 𝑧2)/𝑧 = 𝑐1      …(4) 

Taking 4𝑥, 2𝑦, 0 as multipliers, each fraction of (2) is  

           
4𝑥𝑎𝑥+2𝑦𝑑𝑦

4𝑥𝑦(3𝑥2+𝑦2+𝑧2)−4𝑥𝑦(𝑥2+𝑦2)
=

4𝑥𝑑+2𝑦𝑑𝑦

4𝑥𝑦(2𝑥2+𝑦2)
                …(5) 

Combining this fraction (5) with the last fraction of (2), we get 

       
4𝑥𝑑𝑥+2𝑦𝑑𝑦

4𝑥𝑦(2𝑥2+𝑦2)
=

𝑑𝑧

2𝑥𝑦𝑧
            or        

4𝑥𝑑𝑥+2𝑦𝑑𝑦

2𝑥2+𝑦2 =
2𝑑𝑧

𝑧
 

Integrating it, we get     log(2𝑥2 + 𝑦2) = 2 log 𝑧 + log 𝑐2 

or           2𝑥2 + 𝑦2 = 𝑐2𝑧
2    or        (2𝑥2 + 𝑦2)/𝑧2 = 𝑐2         …(6) 

From (4) and (6), the required general equation of the surfaces 

which are orthogonal to the given family of surfaces (1) is given by 
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               (𝑥2 + 𝑦2 + 𝑧2)/𝑧 = 𝜙[(2𝑥2 + 𝑦2)/𝑧2] 

where 𝜙 is an arbitrary function. 

Example 9. Find the surface which is orthogonal to the one 

parameter system 𝑧 = 𝑐𝑥𝑦(𝑥2 + 𝑦2) which passes through the 

hyperbola 𝑥2 − 𝑦2 = 𝑎2𝑧 = 0. 

Solution. The equation of given system of surfaces is  

                            𝑓(𝑥, 𝑦, 𝑧) = 𝑧/(𝑥3𝑦 + 𝑥𝑦3) = 𝑐                    …(1) 

∴         
𝜕𝑓

𝜕𝑥
= −

𝑧(3𝑥2𝑦+𝑦3)

(𝑥3𝑦+𝑥𝑦3)2
 ,

𝜕𝑓

𝜕𝑦
= −

𝑧(3𝑦2𝑥+𝑥3)

(𝑥3𝑦+𝑥𝑦3)2
 ,

𝜕𝑓

𝜕𝑧
=

1

𝑥3𝑦+𝑥𝑦3 

The required orthogonal surface will be the solution of  

 𝑝 (
𝜕𝑓

𝜕𝑥
) + 𝑞 (

𝜕𝑓

𝜕𝑦
) =

𝜕𝑓

𝜕𝑧
   or  −

𝑧(3𝑥2𝑦+𝑦3)

(𝑥3𝑦+𝑥𝑦3)2
𝑝 −

𝑧(3𝑦2𝑥+𝑥3)

(𝑥3𝑦+𝑥𝑦3)2
𝑞 =

1

𝑥3𝑦+𝑥𝑦3  

or      {(3𝑥2 + 𝑦2)/𝑥}𝑝 + {(3𝑦2 + 𝑥2)/𝑦}𝑞 = −(𝑥2 + 𝑦2)/𝑧 …(2) 

The Lagrange’s auxiliary equations for (2) are 

                  
𝑑𝑥

(3𝑥2+𝑦2)/𝑥
=

𝑑𝑦

(3𝑦2+𝑥2)/𝑦
=

𝑑𝑧

−(𝑥2+𝑦2)/𝑧
               …(3) 

Taking the first two fractions of (3), we have  

        2𝑥𝑑𝑥 − 2𝑦𝑑𝑦 = 0   so that        𝑥2 − 𝑦2 = 𝑐1          …(4) 

Choosing 𝑥, 𝑦, 4𝑧 as multipliers, each fraction of (3) is  

                      = (𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 4𝑧𝑑𝑧)/0 

∴  2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 + 8𝑧𝑑𝑧 = 0    so that    𝑥2 + 𝑦2 + 4𝑧2 = 𝑐2 …(5) 

Hence, the surface which is orthogonal to (1) is given by 

                  𝑥2 + 𝑦2 + 4𝑧2 = 𝜙(𝑥2 − 𝑦2)                         …(6) 
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For the particular surface passing through the given hyperbola 

𝑥2 − 𝑦2 = 𝑎2, 𝑧 = 0, we must take  

                𝜙(𝑥2 − 𝑦2) = 𝑎2(𝑥2 + 𝑦2)/(𝑥2 − 𝑦2)2          …(7) 

Hence, the required surface is given by  

         (𝑥2 + 𝑦2 + 4𝑧2)2(𝑥2 − 𝑦2)2 = 𝑎4(𝑥2 + 𝑦2)         …(8) 

Example 10. Find the family orthogonal to 𝜙[𝑧(𝑥 + 𝑦)2, 𝑥2 − 𝑦2] = 0. 

Solution. Given that            𝜙[𝑧(𝑥 + 𝑦)2, 𝑥2 − 𝑦2] = 0           …(1) 

Let           𝑢 = 𝑧(𝑥 + 𝑦)2      and     𝑣 = 𝑥2 − 𝑦2              …(2) 

Then (1) becomes                  𝜙(𝑢, 𝑣) = 0                         …(3) 

Differentiating (3) w.r.t. x and y partially, we get 

                      
𝜕𝜙

𝜕𝑢
(
𝜕𝑢

𝜕𝑥
+ 𝑝

𝜕𝑢

𝜕𝑧
) +

𝜕𝜙

𝜕𝑣
(
𝜕𝑣

𝜕𝑥
+ 𝑝

𝜕𝑣

𝜕𝑧
) = 0          …(4) 

and                         
𝜕𝜙

𝜕𝑢
(
𝜕𝑢

𝜕𝑦
+ 𝑞

𝜕𝑢

𝜕𝑧
) +

𝜕𝜙

𝜕𝑣
(
𝜕𝑣

𝜕𝑦
+ 𝑞

𝜕𝑣

𝜕𝑧
) = 0           …(5) 

From (2), we get  
𝜕𝑢

𝜕𝑥
= 2𝑧(𝑥 + 𝑦), 

𝜕𝑢

𝜕𝑦
= 2𝑧(𝑥 + 𝑦), 

                
𝜕𝑢

𝜕𝑧
= (𝑥 + 𝑦)2,   

𝜕𝑣

𝜕𝑥
= 2𝑥,  

𝜕𝑣

𝜕𝑦
= −2𝑦,   

𝜕𝑣

𝜕𝑧
= 0 

Putting these values in (4) and (5), we get 

          (
𝜕𝜙

𝜕𝑢
) [2𝑧(𝑥 + 𝑦) + 𝑝(𝑥 + 𝑦)2] + (

𝜕𝜙

𝜕𝑣
) (2𝑥 + 0) = 0     …(6) 

and  (
𝜕𝜙

𝜕𝑢
) [2𝑧(𝑥 + 𝑦) + 𝑞(𝑥 + 𝑦)2]  +(

𝜕𝜙

𝜕𝑣
) (−2𝑦 + 0) = 0   …(7) 

Evaluating the values of 
𝜕𝜙

𝜕𝑢

𝜕𝜙

𝜕𝑣
⁄  from (6) and (7) and then 

equating these, we get 
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𝜕𝜙

𝜕𝑢

𝜕𝜙

𝜕𝑣
⁄ =

2𝑥

2𝑧(𝑥+𝑦)+𝑝(𝑥+𝑦)2
=

−2𝑦

2𝑧(𝑥+𝑦)+𝑞(𝑥+𝑦)2
 

or        𝑥(𝑥 + 𝑦)[2𝑧 + 𝑞(𝑥 + 𝑦)] = −𝑦(𝑥 + 𝑦)[2𝑧 + 𝑝(𝑥 + 𝑦)] 

or        2𝑥𝑧 + 𝑞𝑥(𝑥 + 𝑦) + 2𝑦𝑧 + 𝑝𝑦(𝑥 + 𝑦) = 0 

or                               𝑝𝑦(𝑥 + 𝑦) + 𝑞𝑥(𝑥 + 𝑦) = −2𝑧(𝑥 + 𝑦) 

or                                                        𝑝𝑦 + 𝑞𝑥 = −2𝑧               …(8) 

which is a partial differential equation of the family of surfaces 

given by (1).  

The differential equation of the family of surfaces orthogonal 

to (8) is given by  

          𝑦𝑑𝑥 + 𝑥𝑑𝑦 − 2𝑧𝑑𝑧 = 0    or    𝑑(𝑥𝑦) − 2𝑧𝑑𝑧 = 0         …(9) 

Integrating (9), we get             𝑥𝑦 − 𝑧2 = 𝑐                    …(10) 

which is the desired family of orthogonal surfaces. 

EXERCISE 2(E) 

1. Find particular integrals of the following partial differential 

equations to represent surfaces passing through the given curves: 

(i) 𝑝 + 𝑞 = 1; 𝑥 = 0, 𝑦2 = 𝑧     

(ii) 𝑥𝑝 + 𝑦𝑞 = 𝑧; 𝑥 + 𝑦 = 1, 𝑦𝑧 = 1 

(iii) (𝑦 − 𝑧)𝑝 + (𝑧 − 𝑥)𝑞 = 𝑥 − 𝑦; 𝑧 = 0, 𝑧 = 2𝑥 

(iv) 𝑥(𝑦 − 𝑧)𝑝 + 𝑣(𝑧 − 𝑥)𝑞 = 𝑧(𝑥 − 𝑦); 𝑥 = 𝑦, 𝑥 = 𝑦 − 𝑧 

(v) 𝑦𝑝 − 2𝑥𝑦𝑞 = 2𝑥𝑎; 𝑥 = 𝑡, 𝑦 = 𝑡2, 𝑧 = 𝑡2 

(vi) (𝑦 − 𝑧)[2𝑥𝑦𝑝 + (𝑥2 − 𝑦2)𝑞] + 𝑧(𝑥2 − 𝑦2) = 0; 𝑥 = 𝑡2, 𝑦 = 0, 𝑧 = 𝑡3 
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2. Find the general solution of the partial differential equation 

2𝑥(𝑦 + 𝑧2)𝑝 + (2𝑦 + 𝑧2)𝑞 = 𝑧2 and deduce that 𝑦𝑧(𝑧2 + 𝑦𝑧 −
2𝑦) = 𝑥2 is a solution. 

3. Find the general solution of the partial differential equation 

𝑥(𝑧 + 2𝑎𝑝) + (𝑥𝑧 + 2𝑦𝑧 + 2𝑎𝑦)𝑞 = 𝑧(𝑧 + 𝑎). Find also the 

integral surfaces which pass through the curves: 

(i) 𝑦 = 0, 𝑧2 = 4𝑎𝑥  (ii) 𝑦 = 0, 𝑧3 + 𝑥(𝑧 + 𝑎)2 = 0 

4. Solve 𝑥𝑝 + 𝑦𝑞 = 𝑧. Find a solution representing a surface 

meeting the parabola  𝑦2 = 4𝑥, 𝑧 = 1. 

ANSWERS 

1(i) (𝑦 − 𝑥)2 = 𝑧 − 𝑥      (ii) 𝑦𝑧 = (𝑥 + 𝑦)2 

(iii) 5(𝑥 + 𝑦 + 𝑧)2 = 9(𝑥2 + 𝑦2 + 𝑧2)(iv) (𝑥 + 𝑦 + 𝑧)3 = 27𝑥𝑦𝑧  

(v) (𝑥2 + 𝑦2)3 = 32𝑦2𝑧2                     (vi) 𝑥3 − 3𝑥𝑦2 = 𝑧2 − 2𝑦𝑧 

4. General Solution: 𝜙 (
𝑥

2
,
𝑦

2
) = 0, Required Surface: 𝑦2 = 4𝑥𝑧 

2.17 Linear Partial Differential Equations of Order One with n 

Independent Variables  

Let 𝑥1, 𝑥2, 𝑥3,………, 𝑥𝑛 be the n independent variables and z 

be a dependent function depending on 𝑥1, 𝑥2, 𝑥3,………, 𝑥𝑛. 

Also, let 𝑝1 =
𝜕𝑧

𝜕𝑥1
, 𝑝2 =

𝜕𝑧

𝜕𝑥2
, 𝑝3 =

𝜕𝑧

𝜕𝑥3
,…., 𝑝𝑛 =

𝜕𝑧

𝜕𝑥𝑛
 

Then, the general linear partial differential equation of order 

one with n independent variables is given by 

           𝑃1𝑝1 + 𝑃2𝑝2 + 𝑃3𝑝3+. . . +𝑃𝑛𝑝𝑛 = 𝑅                     …(1) 

where 𝑃1, 𝑃2, 𝑃3,……, 𝑃𝑛 are the functions of 𝑥1, 𝑥2, 𝑥3,………, 𝑥𝑛 

and R is a function of 𝑥1, 𝑥2, 𝑥3,………, 𝑥𝑛 and z. 
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The above partial differential equation (1) can be solved by 

the generalization of Lagrange’s method. Therefore, the system of 

Lagrange’s auxiliary equations is given by 

        
𝑑𝑥1

𝑃1
=

𝑑𝑥2

𝑃2
=

𝑑𝑥3

𝑃3
=……….=

𝑑𝑥𝑛

𝑃𝑛
=

𝑑𝑧

𝑅
                       …(2) 

Let 𝑢1(𝑥1, 𝑥2, 𝑥3,…,𝑥𝑛, 𝑧) = 𝑐1, 𝑢2(𝑥1, 𝑥2, 𝑥3,…,𝑥𝑛, 𝑧) = 𝑐2,  
𝑢3(𝑥1, 𝑥2, 𝑥3,…,𝑥𝑛, 𝑧) = 𝑐3,…, 𝑢𝑛(𝑥1, 𝑥2, 𝑥3,…, 𝑥𝑛, 𝑧) = 𝑐𝑛 be any 

n independent integrals of (2).  

Then, the general solution of (1) is given by 

                        𝜙(𝑢1, 𝑢2, 𝑢3, …… . , 𝑢𝑛) = 0                      …(3) 

SOLVED EXAMPLES 

Example 1. Solve 𝑥2𝑥3𝑝1 + 𝑥3𝑥1𝑝2 + 𝑥1𝑥2𝑝3 = 𝑥1𝑥2𝑥3. 

Solution. The given equation is a linear partial differential equation 

with three independent variables 𝑥1, 𝑥2 and 𝑥3 and z as a dependent 

function depending on 𝑥1, 𝑥2 and 𝑥3. 

Comparing the given partial differential equation with 𝑃1𝑝1 +
𝑃2𝑝2 + 𝑃3𝑝3+. . . +𝑃𝑛𝑝𝑛 = 𝑅, we have 

 𝑃1 = 𝑥2𝑥3,    𝑃2 = 𝑥3𝑥1,   𝑃3 = 𝑥1𝑥2  and  𝑅 = 𝑥1𝑥2𝑥3 

∴ The system of Lagrange’s auxiliary equations is given by  

         
𝑑𝑥1

𝑝1
=

𝑑𝑥2

𝑝2
=

𝑑𝑥3

𝑝3
=

𝑑𝑧

𝑅
  or  

𝑑𝑥1

𝑥2𝑥3
=

𝑑𝑥2

𝑥3𝑥1
=

𝑑𝑥3

𝑥1𝑥2
=

𝑑𝑧

𝑥1𝑥2𝑥3
      …(1) 

Taking the first and the second fractions of (1), we get  

   𝑥1𝑑𝑥1 = 𝑥2𝑑𝑥2 so that 
𝑥1

2

2
=

𝑥2
2

2
+

𝐶1

2
   

which gives   𝑥1
2 − 𝑥2

2 = 𝑐1     or      𝑢1 ≡ 𝑥1
2 − 𝑥2

2 = 𝑐1           …(2) 
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Taking the second and the third fractions of (1), we get  

          𝑥2𝑑𝑥2 = 𝑥3𝑑𝑥3   so that    
𝑥2

2

2
=

𝑥3
2

2
+

𝑐2

2
  

which give     𝑥2
2 − 𝑥3

2 = 𝑐2       or         𝑢2 ≡ 𝑥2
2 − 𝑥3

2 = 𝑐2     …(3) 

Again, taking the third and  fourth fractions of (1), we get  

               𝑑𝑧 = 𝑥3𝑑𝑥3    so that     𝑧 =
𝑥3

2

2
+

𝑐3

2
  

which gives  2𝑧 − 𝑥3
2 = 𝑐3       or       𝑢3 ≡ 2𝑧 − 𝑥3

2 = 𝑐3         …(4) 

Finally, from (2), (3) and (4), the general solution of the given 

partial differential equation is  

                  𝜙(𝑥1
2 − 𝑥2

2, 𝑥2
2 − 𝑥3

2, 2𝑧 − 𝑥3
2) = 0                  …(5) 

Example 2. Solve 𝑃1𝑝1 + 𝑃2𝑝2 + 𝑃3𝑝3 = 𝑎𝑧 +
𝑥1𝑥2

𝑥3
. 

Solution: The given equation is a linear partial differential equation 

with three independent variables 𝑥1, 𝑥2, 𝑥3 and z as a dependent 

function depending on 𝑥1, 𝑥2 and 𝑥3. 

Comparing the given partial differential equation with 𝑃1𝑝1 +
𝑃2𝑝2 + 𝑃3𝑝3+. . . = 𝑅, we have  

           𝑃1 = 𝑥1, 𝑃2 = 𝑥2, 𝑃3 = 𝑥3 and 𝑅 = 𝑎𝑧 +
𝑥1𝑥2

𝑥3
. 

∴  The system of Lagrange’s auxiliary equations is given by  

 
𝑑𝑥1

𝑃1
=

𝑑𝑥2

𝑃2
=

𝑑𝑥3

𝑃3
=

𝑑𝑧

𝑅
     or        

𝑑𝑥1

𝑥1
=

𝑑𝑥2

𝑥2
=

𝑑𝑥3

𝑥3
=

𝑑𝑧

𝑎𝑧+
𝑥1𝑥2
𝑥3

       …(1) 

Taking the first and the  second fractions of (1), we have  
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𝑑𝑥1

𝑥1
=

𝑑𝑥2

𝑥2
      so that   log 𝑥1 = log 𝑥2 + log 𝑐1 

∴            
𝑥1

𝑥2
= 𝑐1           i.e.           𝑢1 =

𝑥1

𝑥2
= 𝑐1                 …(2) 

Taking the second and the third fractions of (1), we have  

         
𝑑𝑥2

𝑥2
=

𝑑𝑥3

𝑥3
     so that        log 𝑥2 = log 𝑥3 + log 𝑐2 

∴         
𝑥2

𝑥3
= 𝑐2         i.e.                𝑢2 =

𝑥2

𝑥3
= 𝑐2                 …(3) 

Again, taking the first and fourth fractions of (1), we have  

           
𝑑𝑥1

𝑥1
=

𝑑𝑧

𝑎𝑧+
𝑥1𝑥2
𝑥3

=
𝑑𝑧

𝑎𝑧+𝑐2𝑥1
 , since  

𝑥2

𝑥3
= 𝑐2 

or                  
𝑎𝑧+𝑐2𝑥1

𝑥1
=

𝑑𝑧

𝑑𝑥1
    i. e. ,     

𝑑𝑧

𝑑𝑥1
− (

𝑎

𝑥1
) 𝑧 = 𝑐2              …(4) 

which is a linear differential equation whose integrating function 

(I.F.) is given as follows :  

            I.F. of (4) =  𝑒
−𝑎 ∫

𝑑𝑥1
𝑥1 = 𝑒−𝑎 log𝑥1 = 𝑥1

−𝑎 

∴ The solution of the linear differential equation (4) is given by  

       𝑧𝑥1
−𝑎 = 𝑐2 ∫𝑥1

−𝑎 𝑑𝑥1 + 𝑐3     or      𝑧𝑥1
−𝑎 = 𝑐2 (

𝑥1
1−𝑎

1−𝑎
) + 𝑐3 

or            𝑧𝑥1
−𝑎 =

𝑥2

𝑥3
.

𝑥1
1−𝑎

(1−𝑎)
+ 𝑐3, since from (2),  𝑐2 =

𝑥2

𝑥3
 

∴     
𝑧

𝑥1
𝑎 − (

𝑥1
1−𝑎

1−𝑎
)

𝑥2

𝑥3
= 𝑐3  i.e.  𝑢3 =

𝑧

𝑥1
𝑎 − (

𝑥1
1−𝑎

1−𝑎
)

𝑥2

𝑥3
= 𝑐3   …(5) 

Finally, from (2), (3) and (5), the general solution of the given 

partial differential equation is  
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                        𝜙 [
𝑥1

𝑥2
,
𝑥2

𝑥3
 , {

𝑧

𝑥1
𝑎 − (

𝑥1
1−𝑎

1−𝑎
)

𝑥2

𝑥3
}] = 0                …(6) 

EXERCISE 2(F) 

Solve the following partial differential equations: 

1. 𝑥1𝑝1 + 𝑥2𝑝2 + 𝑥3𝑝3 = 𝑥1𝑥2𝑥3. 
2. (𝑥3 − 𝑥2)𝑝1 + 𝑥2𝑝2 − 𝑥3𝑝3 = 𝑥2(𝑥1 + 𝑥3) − 𝑥2

2. 

3. 𝑝1 − 𝑥1𝑝2 + 𝑥1𝑥2𝑝3 + 𝑥1𝑥2𝑥3√𝑧 = 0. 

4. (𝑥2 + 𝑥3 + 𝑧)𝑝1 + (𝑥3 + 𝑥1 + 𝑧)𝑝2 + (𝑥1 + 𝑥2 + 𝑧)𝑝3      
= 𝑥1 + 𝑥2 + 𝑥3. 

ANSWERS 

1. 𝜙 (
𝑥2

𝑥1
,
𝑥1

𝑥3
, 𝑥1𝑥2𝑥3 − 3𝑧) = 0 

2. 𝜙(𝑧 − 𝑥1𝑥2, 𝑥1 + 𝑥2 + 𝑥3, 𝑥2𝑥3) = 0 

3. 𝜙(2𝑥2 + 𝑥1
2, 2𝑥3 + 𝑥2

2, 4√𝑧 + 𝑥3
2) = 0 

4. 𝜙{𝑢(𝑧 − 𝑥1), 𝑢(𝑧 − 𝑥2), 𝑢(𝑧 − 𝑥3)} = 0, where  u is given 

by 𝑢 = (𝑧 + 𝑥1 + 𝑥2 + 𝑥3)
1/3 

OBJECTIVE TYPE QUESTIONS 

1. The PDE 𝑃𝑝 + 𝑄𝑞 = 𝑅 is popularly known as 

(a) Lagrange’s equation  (b) Euler’s equation 

(c) Monge’s equation   (d) Leibnitz equation 

2. Lagrange’s auxiliary equations for 𝑥𝑧𝑝 + 𝑦𝑧𝑞 = 𝑥𝑦 are 

(a) 
𝑑𝑥

𝑥𝑧
=

𝑑𝑦

𝑦𝑧
=

𝑑𝑧

𝑥𝑦
   (b) 

𝑑𝑥

𝑥
=

𝑑𝑦

𝑦
=

𝑑𝑧

𝑧
 

(c) 
𝑑𝑥

𝑝
=

𝑑𝑦

𝑞
=

𝑑𝑧

1
   (d) 

𝑑𝑥

𝑝
=

𝑑𝑦

𝑞
=

𝑑𝑧

𝑧
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3. The integral surface satisfying 4𝑦𝑧𝑝 + 𝑞 + 2𝑦 = 0 and passing 

through 𝑦2 + 𝑧2 = 1, 𝑥 + 𝑧 = 2 is 

(a) 𝑦2 + 𝑧2 + 𝑥 + 𝑧 − 3 = 0  (b) 𝑦2 + 𝑧2 + 𝑥 + 𝑧 = 0 

(c) 𝑦2 + 𝑧2 + 𝑦 + 𝑧 − 3 = 0  (d) 𝑦2 + 𝑧2 + 𝑦 + 𝑧 = 0 

4. The solution of the PDE  𝑥𝑧𝑝 + 𝑦𝑧𝑞 = 𝑥𝑦 is  

(a) 𝜙 (
𝑥

𝑦
, 𝑥𝑦 − 𝑧2) = 0  (b) 𝜙(𝑥2, 𝑥𝑦) = 0 

(c) 𝜙(𝑥2𝑦, 𝑥𝑦) = 0   (d) 𝜙(𝑥𝑦, 𝑧 + 𝑥2𝑦) = 0 

ANSWERS 

1. (a)  2. (a)  3. (a)  4. (a) 


