CHAPTER-2

Solutions of Linear Partial Differential
Equations of Order One

2.1 Introduction

Partial differential equations of order one arise in many
practical problems in science and engineering, when the number of
independent variables in the problem under discussion is two or
more. The most general form of a partial differential equation of
order one in two independent variables x and y and a dependent

variable z is f(x,y,z,p,q) = 0, where p = Z—i and q = Z—;. In this

chapter, we shall consider only linear partial differential equations
of order one.

2.2 Linear Partial Differential Equation of Order One

A partial differential equation f(x,y,z,p,q) = 0 of order one
is said to be linear, if it is of first degree in p and g. There is no
restriction on the degree of the dependent variable z. For example,
the equations

xp+yq=xy and x2%p+y?q=z? ..(1)
are linear partial differential equations of order one.

The general form of a linear partial differential equation of
order one is

Pp+Qq =R ...(2)

where P, Q and R are functions of x, y and z.
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If P=0o0r Q=0Iin (2), then the equation can be solved easily.
For example, the equation Z—; = 3x + 4y has its solution z = 3xy +
2y2 + f(x), where f is an arbitrary function of x. Similarly, the
equation Z—JZC = 2x — 3y has its solution z =x%—3xy+ g(¥),
where g is an arbitrary function of y.

2.3 Classification of Partial Differential Equations of Order One

The partial differential equations of order one may be
classified as under:

2.3.1 Quasi-linear Partial Differential Equation

A partial differential equation of order one of the form
0z 0z _
P(x,)’:z)a'FQ(x.y,Z)a—R(X,y,Z) (1)

is called a quasi-linear partial differential equation of order one,
if the degree of partial derivatives Z—i and Z—; appearing in the
equation is one and the coefficients P, Q and R depend upon X, y
and z, e.g. the partial differential equations z %"‘2_; =0 and
yg—i + ng—; = xyz are quasi-linear partial differential equations of
order one.

2.3.2 Almost-linear Partial Differential Equation

A partial differential equation of order one of the form
0z 0z
PCoy) 5, + Qe y) 30 = R(x,y,2) (2)
is called an almost linear partial differential equation of order

one, if the coefficients P and Q are functions of the independent
variables x and y only and R is a function of x, y and z; e.g. the
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partial differential equations xg—i + yz—; =z%andy
almost linear partial differential equations of order one.

0z 0z _ 3
ox xay—Z are

2.3.3 Linear Partial Differential Equation

A partial differential equation of order one of the form
0z 0z
a(x,Y)a+b(x,y)5+C(x,y)z= d(x,y) ...(3)

is called a linear partial differential equation of order one, if the
partial derivatives Z—i and Z—; and the dependent variable z appear in

linear form in the equation while the coefficients a,b,c and d
depend only on the independent variables x and y, e.g. the partial

. . . 0z 0z 0z 0z
differential equations X+ Y3, = N2 and Yot X3, +z=xy
are linear partial differential equations of order one.

2.3.4 Non-linear Partial Differential Equation

A partial differential equation of order one which does not fit
into any of the above categories is called non-linear partial
differential equation of order one, e.g. the partial differential

: 0z\? 622_ 2622 2622_2
equations (5) +(5) =1 and x (5) +y (5) = z% are non-
linear partial differential equations of order one.

2.4 Origin of Linear Partial Differential Equations of Order
One

Before discussing the solution of the partial differential
equations of order one, we shall examine the interesting question of
how they arise. For the purpose, let us consider

x2+y2+ (z—c)? = k? (D

where ¢ and k are arbitrary constants. The equation (1) represents
the set of all spheres whose centers lie along the z-axis.
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Differentiating (1) partially w.r.t. x, we get
x+p(z—c)=0 ...(2)
Again, differentiating (1) partially w.r.t. y, we get
y+q(z—c)=0 ...(3)
Eliminating the arbitrary constant ¢ from (2) and (3), we get
yp—xq =0 ...(4)
which is a partial differential equation of order one.

Thus, we see that the set of all spheres with centers on the z-
axis is characterized by the partial differential equation (4). In some
sense, the function z defined by the equation (1) is called a solution
of the partial differential equation (4).

In chapter 1, we have already seen the origin of partial
differential equations of order one.

2.5 Lagrange’s Partial Differential Equation of Order One

The quasi-linear partial differential equation of order one of
the form

0z 0z
Py, 2) 5.+ Q(xy,2) 30 = R(x,y,2) (D

Ie. Pp+Qq =R ...(2)

where P, Q and R are functions of x, y and z is known as
Lagrange’s partial differential equation. e.g. For example, xyp +
yzq = xy and y?p —xyq = x(z — 2y) are Lagrange’s partial
differential equations. For getting the solution of (1) or (2), we wish
to find a relation between x, y and z involving an arbitrary function.
The first systematic theory of equations of the above type
characterized by (1) or (2) is given by Lagrange. For this reason, the
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partial differential equation (1) or (2) is frequently referred to as
Lagrange’s equation. It should be noted that in this connection the
term linear means that p and q appear in the first degree only but P,
Q and R may be any functions of x, y and z.

2.6 Solutions of Linear Partial Differential Equations of Order
One

We have already observed that the relation of the form

¢(x,y,2z,a,b) =0 (1)
gives rise to PDE of order one of the from
f(x,y,2,0,9) =0 .2

Thus, any relation of the form (1) containing two arbitrary
constants a and b is a solution of the PDE (2).

Now, let us consider the following Lagrange’s partial
differential equation of order one

0 a
P(x,y.Z)£+Q(x.y,Z)£=R(x,y,z) ..(3)

ie., Pp+Qq =R G

where x and y are independent variables. The solution of equation
(3) or (4) is a surface S lying in the (X, y, z) —space, and is called as
an integral surface. If we are given that z = f(x,y) is an integral

surface of the PDE (3) or (4), then the normal to this surface will

have direction cosines proportional to (g—i,g—i,—l) or (p,q,—1).

Therefore, the direction of the normal is given by 7= {p,q, —1}.
From the PDE (4), we observe that the normal 7 is perpendicular to

the direction defined by the vector £ = {P,Q, R} as shown in the
Figure 2.1.
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Figure 2.1: Integral Surface z = f(x, y)

Therefore, any integral surface must be tangential to a vector
with components {P, Q, R} and hence, will never leave the integral
surface. Also, the total differential dz is given by

0z 0z
dz-adx+5dy ...(5)

From equations (4) and (5), we find that
{P,Q,R} = {dx,dy,dz} ...(6)

2.7 Method of Solution of Lagrange’s Partial Differential
Equation

We have seen the Lagrange’s partial differential equation of
the form Pp + Qq =R, where P, Q and R are functions of
x,y and z.

The method of solution of Lagrange’s partial differential
equation is contained in following theorem:

Theorem: The general solution of the Lagrange’s partial
differential equation

Pp+Qq =R ..(1)
is ¢(u,v) =0 ...(2)

where u(x,y,z) =c;and v(x,y,z) = c, ...(3)
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are two independent solutions of the following system of auxiliary
equations:

Z=2== . (4)

where ¢ is an arbitrary function, ci and c; are arbitrary constants
and at least one of u and v must contain z.

The set of equations given by (4) are called Lagrange’s
auxiliary equations or Lagrange’s subsidiary equations. The
curves given by u(x,y,z) = ¢; and v(x,y,z) = c, are called the
characteristic curves.

Proof: Given Lagrange’s partial differential equation is
Pp+Qq =R ..(D)
Let dp(u,v)=0 ..(2)
be the solution of the given Lagrange’s equation (1).

Differentiating (2) partially w.r.t. x, we get

200u , 090ude) | (3000 000v0a)
(6u6x+6uazax T 6v6x+6vazax =0

d¢p (Ou , du ¢ (Ov  Ov _
or E(a+$p)+$(a+a—zp)—0 ...(5)

Similarly, differentiating (2) partially w.r.t. y, we get

DR DECIC

Eliminating ¢ i.e., g—i’ and ‘;—f from (5) and (6), we get

) @) (a2 (& 4 p) =
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(au v u av) (au v u Bv) ou dv oudv _ 0

dzdy 0dyoz dx 0z dz 0x dx dy 0y odx
(au ov du 617) (6u v du 617) __Ouodv du dv (7)
0y 0z 0z dy 0z 0x 0x 0z q= dxody dyox

which can also be put in the form

a(u,v) o(wwv) _ a(uw) (8)
0(y.2) a(zx)  a(xy)

or Pp+Qq =R
_oudv _oudv _ o)

where =35,92 323y — 30.2) ...(9)
_oudv _oudv _ o)

Q= 8z 0x 09x0z 9(zx) "'(10)
_oudv _dudv _ oy

and =%dy 3yox 3Gy ...(11)

Thus, the equation Pp + Qq =R is a partial differential
equation of order one and degree one for which ¢(u,v) =0 is a
solution.

Now, taking the differentials of two independent solutions
u(x,y,z) =c; and v(x,y,z) =c,,we get

u ou ay _
adx+ady+a—zd2—0 ...(12)
v v v

and adx-i'ady-i‘adZ—O (13)

Since u and v are independent functions, therefore, solving
equations (12) and (13) for the ratios dx: dy: dz, we get
o s e ..(14)

Judv Judv — Judv 0udv — dudv dudv
0ydz 0z0y 0z0x 0x0z d0xdy 0ydx

Now, comparing equation (14) with (4), we obtain
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dudv Odudv oudv oudv dudv Jdudv

9ydz 0z0 370%x 9xdz __ 0xdy 0yd
Yoz 0z0y _ 0z9x 9dxdz _ 9X0Y yx:k,say (15)
P Q R
ou dv oudv _ ou dv Judv _ Q ou dv ou dv
dydz d8zdy ' 9zdx 9dxdz " 9xdy Odydx

Substituting these values in equation (7), we get

k(Pp+Qq) =kR or Pp+Qq=R
which is the given partial differential equation (1).

Therefore, if u(x,y,z) =c¢; and v(x,y,z) =c, are two
independent solutions of the system of differential equations % =
‘;—y = %, then ¢ (u, v) = 0 is a solution of Pp + Qq = R, where ¢ is
an arbitrary function.

2.8 General Methods of Solution of Lagrange’s Equation

Let us consider the Lagrange’s partial differential equation

Pp+Qq=R ..(D)
The Lagrange’s auxiliary equations for (1) are:

dx dy dz

E__= (2

P Q R
which are generally solved by the following two methods:

2.8.1 Method of Grouping

In this method, we take any set of two fractions (ratios) of
(2), equate them and cancel the common factor, if any in the
denominators. Then, we integrate the resulting differential equation
to get a solution of the form u(x, y, z) = c1. Similarly, we take
another set of two fractions of (2), equate them and repeat the above
procedure to get another solution of the form v(x, y, z) = c2. These
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two solutions will constitute the general solution in one of the forms
¢ (u,v) =0o0ru=¢() or v=¢(u), where ¢ is an arbitrary
function.

2.8.2 Method of Multipliers
In this method, we choose any three multipliers I, m, n which
may be constants or functions of x, y and z in such a way that

dx _dy _dz _ ldx+mdy+ndz

P 0 R IP+mQ+nR --(3)
If it is possible to choose |, m, n such that IP + mQ + nR =0,
then the value of numerator | dx + m dy + n dx in the last fraction of
(3) is also zero i.e. | dx + m dy + n dx = 0 which can be integrated
to have u(x, y, z) = c1. This process may be repeated to have another
integral v(X, y, z) = co. Sometimes the numerator | dx + m dy + n dz
Is an exact differential of the denominator, then on integration, we
get a solution of the form u (x, y, ) = c1. This process is repeated to
have another solution v(x\y,z) = c2. Finally, the solutions
u(x,y,z) = c,and v(x,y,z) =c, will constitute the general
solution in one of the forms ¢(u,v) = 0oru = ¢p(v) orv = ¢p(u)

The multipliers I, m and n are called Legrange’s multipliers
or Lagrangian multipliers.

2.8.3 Working Rules for Solving Pp + Qq = R by Lagrange’s
Method

The following steps are required for solving the given partial
differential equation of order one by Lagrange’s method:

Step 1. Put the given partial differential equation in the form

Pp+Qq =R ..(1)

Step 2. Write down Lagrange’s auxiliary equations for (1), namely

&_w»_2& e
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Step 3. Solve (2) either by using the method of grouping or by the
method of multipliers.

Let u(x,y,z) =c; and v(x,y,z) = c, ...(3)
be the two independent solutions of (2).

Step 4. The general solution (or integral) of (1) is then written in
one of the following three equivalent forms:

¢(u,v) =0,u=¢w) or v=ae(u) ...(4)
where ¢ is an arbitrary function.
2.9 Certain Rules for Solving Lagrange’s Auxiliary Equations

Here, we shall discuss four rules for getting two independent

. , . . dx dy dz
solutions of the Lagrange’s auxiliary equations >0 ®
Accordingly, we have four types of problems based on Lagrange’s
partial differential equation Pp + Qq = R.

2.9.1 Rule I for Solving % = %

_dr
TR

Let the Lagrange’s auxiliary equations for the partial
differential equation

Pp+Qq=R ..(D)

be = .2)
P Q R
If one of the variables is either absent or cancels out from any
two fractions of Lagrange’s auxiliary equation (2), then in this case,
an integral can be obtained by the usual methods. The same
procedure can be repeated with another set of two fractions of
Lagrange’s auxiliary equations (2).



38

The following examples will make the concept more clear:
SOLVED EXAMPLES

Example 1. Solve the partial differential equation 2p + 3q = 1 by
Lagrange’s method.

Solution : The given partial differential equation can be written as
Pp+Qg=R ..(D)
where P=2 Q=3 and R=1

The Lagrange’s auxiliary equations for (1) are given by

dx d dz dx d dz
2D _Z o ==2=Z ..(2)
P Q R 2 3 1

Taking the first two fractions of (2), we have
— = Oor 3dx-2dy=0
which on integration gives 3X-2y=c1 ...(3)

~u(x,y,z) = 3x — 2y = c1 is one solution of the given partial
differential equation.

Similarly, taking the last two fractions of (2), we have

dy:% or dy—3dz=0

3

which on integration gives y—-3z=c¢ ...(4)

~ v(x,y,z) =y — 32 = c2 is another solution of the given
partial differential equation.

Hence, the desired general solution is given by

¢(Bx —2y,y—32) =0 ...(5)
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where ¢ is an arbitrary function.

Example 2. Find the general solution of zp + x = 0.

Solution : The given partial differential equation can be written as
Pp+Qg=R ..(D)

where P=z Q=0 and R=-x.

The Lagrange’s auxiliary equations for (1) are:

ooz .2)

z 0 -X
Taking the first and the last fractions of (2), we have

ax _ dz or xdx+zdz=0

z —-X
- - - - x2 22 2 2
which on integration gives S t5= k or x*+2z°=c¢ ...03)

u(x,y,z) = x? 4+ z% = ¢, is one solution of the given
partial differential equation.

Also, the second fraction of (2) implies that dy =0
which on integration gives y==¢C2 ...(4)

~ v(x,y,z) =y = ¢z is another solution of the given partial
differential equation.

Hence, the desired general solution is given by
¢ (x> +z%4y)=0 ...(5)
where ¢ is an arbitrary function.
Example 3. Solve ptanx + gtany = tan z.

Solution. Giventhat (tanx)p + (tany)q = tanz ...(D
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The Lagrange’s auxiliary equations for (1) are

dx dy dz

= _ .2)

tanx - tany - tanz

Taking the first two fractions of (2), we get
cotxdx —cotydy =0
which on integration gives logsinx — logsiny = logc,

sinx

=c ...(3)

or log (:2;) =logc, oOr Gy
Taking the last two fractions of (2), we get
cotydy —cotzdz =0
which on integration gives  logsiny — logsinz = log ¢,

siny

or log (Siny) =logc, or =Cy ...(4)

sinz sinz

From (3) and (4), the required general solution is given by

¢ (sinx siny) -0 (5)

siny’ sinz

where ¢ is an arbitrary function.
Example 4. Solve  y?p — xyq = x(z — 2y).
Solution. Given that y?p — xyq = x(z — 2y) ..(1)

The Lagrange’s auxiliary equations for (1) are

dx _ dx __ dz
¥y -xy  x(z-2y)

.2

Taking the first two fractions of (2), we get % =—=

or 2xdx + 2ydy = 0 so that x2+y*=¢  ...3)
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Taking the last two fractions of (2), we get f—;’ = Z‘_izy
dz _Z—Zy E l —
or T2 o (y) z2=2 (%)

which is a linear differential equation in z.
.F. of (4) is given by I.F.= e/(1/»)dy = plogy — 4,
=~ The solution of equation (4) is given by
zy=[2ydy+c, or zy—y?=c, ..(5)
~ From (3) and (5), the desired solution is given by
d(x?+y%zy—y?) =0 ...(6)
where ¢ is an arbitrary function.
Example 5. Solve  (x% + 2y?)p — xyq = xz.
Solution. Given that (x2 + 2y?)p — xyq = xz (D)

The Lagrange’s auxiliary equations for (1) are

ax__ ay _az
x242y2  —xy  xz -(2)

Taking the last two fractions of (2), we get

d dz d dz
=== oo Z+Z=0
-y z v z

which on integration gives logy + logz = logc,
or logyz =logc; or VZ = ...(3)

Again, taking the first two fractions of (2), we have

dx _ x%+2y? dx 2\ 2 _
T o 2T+ (yz)x =—4y .4
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Putting x? = v so that 2x Z = Ly (4), we get
dy dy

Z—Z+(§)v=—4y ...(5)
which is a linear differential equation in v.
Its integrating factor = e/ (2/¥)dy = g2logy — 2
Therefore, the solution of equation (5) is given by
yiv = [{(—4y)xy?}dy + ¢, or y*x?+4+y*=c? ..(6)
Hence, from (3) and (6), the general solution is given by
¢(yz,y*x* +y*) =0 .(7)
where ¢ is an arbitrary function.
EXERCISE 2(A)
Solve the following partial differential equations:
lp+g=1 2.xp+yq =z 3.zp=x
4. x*p+y*p=2z> L.x*p+y*q+2z>=0

6.p+q=sinx 7.yzp + 2xq =xy 8.yzp + zxq = xy

ANSWERS
lL.opx—y,x—2)=0 2.¢(§,§):
2 _ 2 1 11 1
3.p(y,x*—2z°)=0 4_¢(;_;’;_;)=0

1 1
;+;)—0 6.0(x —y,z+cosx) =0

56 (-5

7.0(x* —z%,y2—42) =0 8. ¢p(x*>—y%4,x2—-2%)=0
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2.9.2 Rule 11 for Solving % = % = %

Let the Lagrange’s auxiliary equations for the partial differen-
tial equation Pp+Qq =R ..(1)

be & (2)

P Q R

Suppose that one integral of (2) is known by using rule 1
explained in previous article and suppose also that another integral
cannot be obtained by using the rule | of previous article. Then, one
(the first) integral known to us is used to find another (the second)
integral as shown in the following solved examples. Note that in the
second integral, the constant of integration of the first integral
should be removed later on.

SOLVED EXAMPLES
Example 1. Find the general solution of p + 3q = 5z + tan (y — 3x).
Solution : Giventhat p + 3q = 5z + tan(y — 3x) ..(1)
The Lagrange’s auxiliary equations for (1) are

dx _dy _ dz (2)
1 3 5z+tan(y—3x)

Taking the first two functions of (2), we have
T =5 or dy—3dx=0 ...(3)
which on integration gives y—3x=¢1 ...(4)

=~y —3x = cy is one solution of the given PDE, where c; is an
arbitrary constant.

Again, taking the first and the last fractions of (2), we have
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dx dz dz
= = or dx = ———
1 5z+tan(y—3x) 5z+tan(y—3x)

Putting y — 3x = c,from (4) in it, we obtain dx = Sz+('ch ..(3)
1
which on integration gives x = élog(Sz +tanc;) + ¢, ...(6)
Removing the constant c1 from this by using (4), we get
5x —log[5z + tan(y — 3x)] = ¢, ..(7)

~ 5x —log[5z + tan(y — 3x)] = ¢, is another solution of the
given PDE, where ¢z is an arbitrary constant.

Hence, the required general solution is given by
¢ly —3x,5x —log {5z+tan(y —3x)}] =0 ...(8)
where ¢ is an arbitrary function.
Example 2. Solve  xz(z? + xy)p — yz(z? + xy)q = x*.
Solution. Given that xz(z? + xy)p — yz(z? + xy)qg = x* ...(1)

The Lagrange’s auxiliary equation for (1) are

dx _ dy __dz
xz(z2+xy) - —yz(z2+xy) T x4

..

Cancelling z(z2 + xy) from first two fractions of (2), we get

dx d dx d
ax _ 4y or —-|-—y=()
x -y X y

...(3)
Integrating (3), we get logx +logy =logc; or xy =c¢; ...(4)
Taking the first and the last fractions of (2), we have

dz __dz
xz(z2+xy) T x4
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dx __az
xz(z2+cq) T ox4

Putting xy = c,from (4) in it, we get

or x3dx =2z(z*+c¢)dz or x3dx— (z®+c,z2)dz=0 ...(5

i ¥t _ 2t _ar_ o
Integrating (5), we get e =
or x*—z*—-2¢z% =¢, ...(6)

Removing the constant ci1 from this by using (4), we get
x* —z* = 2xyz? =, ..(7)
From (4) and (7), the required integral is given by
P(xy,x* —z* — 2xyz?) =0 ...(8)
where ¢ is an arbitrary function.
Example 3. Solve xyp + y?q = zxy — 2x2.
Solution. Given that  xyp + y%q = zxy — 2x? ..(1)

The Lagrange’s auxiliary equations for (1) are

dx dy dz

xy = F = zxy—2x2 (2)
Taking the first two fractions of (2), we have
dx _ dy lax—tgv =
vl or xdx ydy—O ...(3)
Integrating (3), we get logx —logy = logc;
or x/y=c O x=cy ...(4)

Again, taking the last two fractions of (2), we get

dy dz

y2 zZxy—2x2



) _ L. dy dz
Putting x = ¢,y from (4) init, we get -5 = —=—-3
dz
c1(z-2cq1)

or dy =

Integrating (5), we get ¢,y —log(z — 2¢;) = ¢,
Removing constant c; from this by using (4), we get
x —loglz —2(x /y)] = c;
From (4) and (7), the required general solution is given by
Pl(x/y), x —log{z — 2(x?/y*)}] = 0

where ¢is an arbitrary function.
Example 4. Solve xzp + yzq = xy.
Solution. Given that XZp + yzq = xy

The Lagrange’s auxiliary equations for (1) are

dx _dy _ dz
xz_yz_xy

Taking the first two fractions of (2), we get

dx dy_o

x y

Integrating (3), we get logx —logy =logc,

or xX/y=c¢ Of x=cy
. . dy dz
Taking the last two fractions of (2), we get gl
d_y __ dz

Using x = ¢,y from (4) in it, we get vz c1y?

46

..(5)
...(6)

(7)

.(8)

(D)

.2

..3)

.4
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or cydy=zdz or 2cydy—2zdz=0 ...(5)
Integrating (5), we get aqyt—-zt=c, ...(6)
Removing constant c1 from this by using (4), we get
Xy —Z = Cy ..(7)
From (4) and (7), the required solution is given by
¢(x/y,xy —2z?) =0 -..(8)
where ¢ is an arbitrary function.
Example 5. Solve  py + gx = xyz?(x? — y?).
Solution. Giventhat  py + gx = xyz?(x? — y?) (D

The Lagrange’s auxiliary equations for (1) are

dx _dy _ dz

S X oD ...(2)

Taking the first two fractions of (2), we get % = %y
or xdy—ydy=0 or 2xdx-—2ydy=20 ...(3)
Integrating it, we get x2—y?2=¢ ..(4)

. . d__‘y _ dz
Taking the last two fractions of (2), we get i e TeE )

Using (4) in it, we get ‘;—y = xy‘ZC

1
or 2c,ydy —2z7%dz =0 ..(5)
Integrating (5), we get ¢,y + G) =, ...(6)

Removing constant c1 from this by using (4), we get
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V(2 =y) +(2/2) =c, -(7)
From (4) and (7), the required solution is given by
l(x* —y*),y*(x* =y + (2/2)] =0 ...(8)

where ¢ is an arbitrarty function.

Example 6. Solve px(z — 2y?) = (z — qy)(z — y? — 2x3).

Solution. Re-writing the given partial differential equation, we have
x(z=2y)p+y(z—y?—-2x3)qg=z(z—y*—2x3) ..(1)
The Lagrange’s auxiliary equations for (1) are

dx _ dy _ dz )
x(z—=2y2)  y(z—-y2-2x3)  z(z-y2—2x3)

Taking the last two fractions of (2), we get % = ‘i}—y

Integrating it, we get logz =logy + logc;
or z[y=¢ or Z =0y ...(3)
where c1 is an arbitrary constant.

Again, taking the first two fractions of (2), we have

dx _ dy
x(z—2y?)  y(z—y2-2x3)

dx _ dy
x(c1y-2y2)  y(c1y-y?-2x3)

Using (3) in it, we get

or (c1y —y? —2x¥)dx +x(2y — ¢;)dy =0 ..(4)
Comparing (4) with Mdx + Ndy = 0, we have

M=cy—y?*—2x3and N=xQ2y—c)



49

oM ON
E=cl—2y and L=y
1 (/0M dON 1
Now ;(5 - a) = oy 1 = 2y) — 2y —¢1)]
_ —2@y-c) _ 2
o x(2y—cq) T x

which is a function of x alone.
Hence, the integrating factor (I.F.) of (4) is given by
I.E. = eJ(=2/0)dx — p-2logx — plogx™% _ ,.-2
Multiplying (4) by x =2, we get the following equation:
(cryx 2 —y?x72 = 2x)dx + x 12y — ¢)dy = 0
By usual rule, its solution is given by
[{(ey —yH)x2 = 2x}dx + [ 7' 2y — c)dy = ¢,
(Treating y as constant) (Integrating terms free from x)
or (cy—y)(=1/x)—x*=c; or (¥*—cy)/x—x*=¢,
Removing constant c1 from this by using (3), we get
(y2—z—x3)/x =cy,since ¢y =1z ...(5)
where ¢z is an arbitrary constant.
From (3) and (5), the required solution is given by
¢l(z/y), y? —z—x%)/x] =0 ...(6)

where ¢ is an arbitrary function.
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EXERCISE 2(B)

Solve the following partial differential equations:
1.p—2q=3x%sin(y+2x) 2.p—q=2z/(x+Yy)
3.xy’p—y3q+axz=0 4.(x% —y? —z%)p + 2xyq = 2x
5.z(p—q)=z*+(x+y)?6.p+3q =z + cot(y — 3x)
7.xyp+y*q=xyz—2x*> 8.zp—zq=x+y

ANSWERS
1. ¢y + 2x,x%sin(y + 2x) —z] =0

Plx+y,x—(x+y)logz] =0

¢[xy,logz (ax/3y?)] =0

bly/z, (x* +y* +2%)/z] = 0
dlx +y,e?{z? + (x +y)*} = 0
¢y — 3x,x —log|z + cot(y — 3x)|] =
¢lx/y,x —loglz — (2x/y)|] = 0
dlx+y,2x(x+y)—2z2]=0
2.9.3 Rule 111 for Solving % =0 =

Let the Lagrange’s auxiliary equations for the partial
differential equation Pp+Qq =R (D)
dx

_y_dz
be S=T=a .(2)
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Again, if P;,Q, and R, be functions of x,y and z, then by a
well-known principle of algebra, each fraction in (2) will be equal
to

(Pydx + Q;dy + R;dz)/(P,P + Q:Q + R.R) ...(3)

If ,P+ Q,Q + R,R = 0, then the numerator of (3) is also
zero. This gives P;dx + Q,dy + R,;dz = 0 which can be integrated
to give u(x, y, z) = c¢;. This method may be repeated to get another
integral v(x,y,z) =c,. Here, P;,Q;, and R, are called as
Lagrange’s multipliers. As a special case, these can be constants
also. Sometimes, only one integral is possible by the use of
Lagrange’s multipliers. In such cases, the second integral should be
obtained either by using rule | or rule 1l of the previous articles as
the case may be.

SOLVED EXAMPLES
Example 1. Solve {(b — ¢)/a}yzp + {(c — a)/b}zxp = {(a — b) /c}xy
Solution. Given partial differential equation is
{(b—c)/a}yzp + {(c — a)/b}zxp = {(a — b)/c}xy (1)

The Lagrange’s auxiliary equations of (1) are

adx _ bdy _ cdz
(b=A)yz ~ (c—a)zx  (a—b)xy -(2)

Choosing x, y and z as multipliers, each fraction for (2) is

_ ax dx+by dy+cz dz __axdx+by dy+czdz
~ xyz[(b—c)+(c—a)+(a-b)] 0

axdx +bydy+czdz=0o0r 2axdx+ 2bydy + 2czdz =0
Integrating it, we get  ax? + by? + cz? = ¢4 ...(3)

where c; is an arbitrary constant.
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Choosing ax, by and cz as multipliers, each fraction of (2) is

_ a’xdx+b%ydy+c?zdz __a’xdx+b2ydy+c?zdz
o xyzla(b—c)+b(c—a)+c(a—b)] o 0

& a’xdx + b?ydy + c?zdz =0 or 2a’xdx + 2b%ydy + 2¢?zdz = 0
Integrating it, we get  a?x? + b%y? + c?z% =, ..(4)
where c, is an arbitrary constant.
From (3) and (4), the required general solution is given by
p(ax? + by? + cz?,a?x? + b2y?2 + c?z2) =0  ...(5)
where ¢ is an arbitrary function.
Example 2. Solve  z(x + y)p + z(x — y)q = x* + y2.
Solution. Giventhat z(x +y)p+z(x—y)g=x*+y* ...(1)

The Lagrange’s auxiliary equations for (1) are

dx _  dy _  dz
z(x+y)  z(x—y)  x2+y?

.2

Choosing x, —y, —z as multipliers, each fraction of (2) is

_ x dx-y dy—zdz __ xdx-ydy-zdz
T xz(x+y)-yz(x-y)-z(x2-y?) 0

. xdy—ydy—zdz=0 or 2xdx—2ydy—2zdz=0
Integrating it, we get x2—y?—z2=¢ ...(3)
where ¢, is an arbitrary constant.

Again, choosing y, x, —z as multipliers, each fraction of (2) is

_ ydx+xdy—-zdz _ydx+xdy-zdz
- yz(x+y)+xz(x—y)—z(x2+y2) - 0
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~ydx+xdy—zdz=0 or 2d(xy)—2zdz=0

Integrating it, we get 2xy —z% =¢, (4
where c, is an arbitrary constant.

From (3) and (4), the required general solution is given by

Pp(x? —y? —z%2xy—2z2) =0 ..(5)

where ¢ is an arbitrary function.
Example 3. Solve  (mz —ny)p + (nx — lz)q = ly — mx.
Solution. Giventhat (mz —ny)p+ (nx —lz)q =ly —mx ...(1)

The Lagrange’s auxiliary equations for (1) are

mz—-ny T onx-lz ly—mx

dx dy dz - (2)

Choosing x, y, z as multipliers, each fraction of (2) is

x dx+ydy+zdx __ xdx+ydy+zdz

= x(mz-ny)ty(x—lz)+z(ly-mx) 0
xdx + ydy + zdx = 0 or 2xdx + 2ydy + 2zdz =0
Integrating it, we get  x% 4+ y? + 2% = ¢4 ...(3)
where ¢, is an arbitrary constant.

Again, choosing [, m, n as multipliers, each fraction of (2) is

_ ldx+mdy+ndz __ldx+mdy+ndz
- I(mx—ny)+mnx—1z)+n(ly—-mx) - 0
We have ldx + mdy + ndz =0
Integrating it, we get Ix +my +nz =c, ...(4)

where ¢ is an arbitrary constant.
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From (3) and (4), the required general solution is given by
d(x?+y*+z4Ix+my+nz) =0 ..(5)
where ¢ is an arbitrary function.
Example 4. Solve x(y? —z2)q — y(z% + x*)q = z(x? + y?).
Solution. Given that x(y? — z2)q — y(z2 + x?)q = z(x? + y?) ...(1)

The Lagrange’s auxiliary equations for (1) are

dx _ dy _ dz

x(y2-z2)  —y(z%+x?)  z(x2+y?) ()
Choosing x, y, z, as multipliers, each fraction of (2) is
_ xdx+ydy+zdz _ xdx+ydy+zdz
x2(y2-22)—y2(z2+x2)+22(x%+y?) 0
. We have xdx +ydy +zdz =0
Integrating it, we get ~ x% +y? +z%2 = ¢, ...(3)
Choosing % —i, — i as multipliers, each fraction of (2) is
_ Q/x)dx-Q/y)dy-(1/z)dz _ (1/x)dx-(1/y)dy—(1/z)dz
y2-2z24224x2-(x24y?) 0
Wehave (1/x)dx — (1/y)dy — (1/z)dz =0
Integrating it, we get logx —logy —logz = logc,
or log{x/(yz)} =logc, or x/yz=c, ...(4)

Using (3) and (4), the required general solution is given by
2 2 2 X\ _
qb(x +y +Z,yz)—0 ...(5)

where ¢ is an arbitrary function.
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Example 5. Solve (x —y)p+ (x +y)q = 2xz.
Solution. Giventhat (x —y)p+ (x +y)q = 2xz (1)

The Lagrange’s auxiliary equations for (1) are

dx dy dz

x—y - x+y = 2%z -(2)
Taking the first two fractions of (2), we have
dy _ x+y _ 1+(y/x)
ax  x-y  1-(/%) -(3)
which is a homogeneous differential equation in x and y.
Therefore, letusput  y/x =v ie. y =XV ...(4)
so that, we have (dy/dx) = v + x(dv/dx) ...(5)
. . dv 1+v
Using (4) and (5) in (2), we get v + X—=—
dv  1+v 1+v-v(1-v)  14v?
or _= —— = =
dx 1-v 1-v 1-v
Separating the variables, we can write
1-v dx 2 2v 2dx
14v2 dv = x or (1+v2 B 1+v2) T x ---(6)

Integrating it, we get 2tan™!v —log(1 + v2) = 2logx — logc;
or log x? —log(1 + v?) —logc, = 2tan™1v

or log{x%(1+v?)/c;} =2tan"tv or x%(1+ v?) = ce2tan v
or x2[1 + (y2/x2)] = ¢ e2@n ' 0/0) a5 p = y/x by (4)
Yy

-2 tan'l(—

or (x% +y?)e %) = c (7

where c; is an arbitrary constant.
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Choosing 1,1, —1/z as multipliers, each fraction of (2) is

. dx+dy—(1/z)dz __dx+dy—(1/z)dz
T =)+ Gety)-(1/2)(2xz) 0
. We have dx+dy—(1/2)dz=0
Integrating it, we get x+y—-logz=c, ...(8)

where c, is an arbitrary constant.

From (7) and (8), the required general solution is given by
) ((xz + yZ)e—Ztan_l(Y/x)’x +y— logz) =0 ...09
where ¢ is an arbitrary function.

EXERCISE 2(C)

Solve the following partial differential equations by
Lagrange’s method:

1 x(y? — 29)p + y(22 — x2)q = z(x% — y?)
2.z(xp—yq) =y*—x* 3.y +z)p—xyq+xz=0

4. yp —xq = 2x — 3y 5.x2(y —2)p+y*(z—x)q = z*(x — y)
ANSWERS

1. ¢p(x*+y?+2%xyz) =0 2.p(x2+y%+2z%,xy) =0

. p(x?+y?+2%y/z) =0 4.¢(x%>+y%3x+2y+2)=0

5.¢(xyz,§+§+§) =0

2.9.4 Rule IV for Solving % =

=| &

Let the Lagrange’s auxiliary equations for the PDE
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Pp+Qq=R (D)
ax _dy _ dz
be e 0 " R ...(2)

Let P;, Q; and R, be functions of x,y and z. Then, by a well-
known principle of algebra, each fraction of (2) will be equal to

(Pydx + Q,dy + R dz)/(P;P + Q:Q + RyR) ...(3)

Suppose that the numerator of (3) is an exact differential of
the denominator of (3). Then (3) can be combined with a suitable
fraction in (2) to give an integral. However, in some problems,
another set of multipliers P,,Q, and R, are so chosen that the
fraction

(P,dx + Q,dy + R,dz) /(P,P + Q,Q + R;R) ...(4)

is such that its numerator is an exact differential of denominator.
Fractions (3) and (4) are then combined to give an integral. This
method may be repeated in some problems to get another integral.
Sometimes, only one integral is possible by using the rule V. In
such cases, the second integral should be obtained by using rule 1 or
rule 2 or rule 3 of previous articles.

The following solved examples will illustrate the rule:
SOLVED EXAMPLES
Example 1. Solve (y+2z)p+(z+x)g=x+y.
Solution. Giventhat (y+z)p+ (z+x)gq=x+y ..(1)

The Lagrange’s auxiliary equations for (1) are

dx _dy _ dz (2

y+z  z+x  x+Yy

Choosing 1, —1,0 as multipliers, each fraction of (2) is
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_ dx—dy __dx-y)
T +)-(z+x)  —(x-y)

..3)

Again, choosing 0, 1, —1 as multipliers, each fraction of (2) is

. dy—dz _d(y-2)
T @+0)-(x+y)  -(y-2)

(4

Finally, choosing 1, 1, 1 as multipliers, each fraction of (2) is

_ dx+dy+dz _ dx+y+z) (5)
T (v+2)+@+0)+(x+y) | 2(x+y+2z)
Now, from the fractions (3), (4) and (5), we get
d(x-y) _ d(y-z) _ d(x+y+z) (6)
-(x-y) -(-2 2(x+y+2)
d(x-y) _ d(y-z)

Taking the first two fraction of (6), we get
x-y Y-z

Integrating it, we get log(x — y) = log(y — z) + logc,
or log{(x —y)/(y —2)} =logc; or (x—y)/(y—2) =c;1...(7)
Taking the first and the third fractions of (6), we have

dx-y) |, dlx+y+z) _
(x—y) x+y+z -

Integrating it, we get 2log(x —y) +log(x + y + z) =logc,
or (x—y)2(x+y+z)=c ..(8)
From (7) and (8), the required general solution is given by
dlx =)/ =2, x=y)2x+y+2)]=0 ..09
where ¢ is an arbitrary function.

Example 2. Solve y2(x — y)p + x2(y — x)q = z(x? + y?).
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Solution. Given that y2(x —y)p + x2(y —x)qg = z(x®> + y?) ...(1)

The Lagrange’s auxiliary equations for (1) are

dx dy dz

V2-y) | —x2(—y) | 2(x2+y?) --(2)
Taking the first two fractions of (1), we get
x?dx = —y?dy or 3x%dx +3y?dy =0
Integrating it, we get x}+y3=¢ ...(3)
Choosing 1, —1,0 as multipliers, each fraction of (2) is
_ dx—dy _ dx-dy 4

y2a-y)+x2(x-y)  (x-y)(x2+y?)
Combining the third fraction of (2) with fraction (4), we get

dx—dy _ dz d(x-y) dz

(x-y)(x2+y2)  z(x2+y?2) x=y z 0

Integrating it, we get log(x —y) —logz = logc,

or log {(x;—y)} =logc, or (x—y)/z=rc, ..(5)
From (4) and (5), the required solution is given by
¢[x* +y% (x—y)/z] =0 ...(6)
where ¢ is an arbitrary function.
Example 3. Solve(x? — y2 —yz)p + (x? — y? —zx)q = z(x — y)
Solution. Given partial differential equation is
(X =y?—yp+ (P —y*—z0)qg=z(x-y) ..()

The Lagrange’s auxiliary equations for (1) are



dx _ dy _ dz
x2-y2—yz  x2-y2-zx  z(x—y)

Choosing 1, —1,0 as multipliers, each fraction of (2) is

_ dx—-dy __dx-ay
T (x2-y2-yz)-(x2-y2-zx)  z(x-y)

Choosing x, —y, 0 as multipliers, each fraction of (2) is

_ xdx—-ydy __ xdx-ydy
T x(x2-y2-yz)-(x2-y2-zx)  (x-y)(x%-y?)

From the last fractions of (2), (3) and (4), we have

dx _ dx-dy _  xdx—ydy dz _ dx—dy _ 2xdx-2ydy

z(x-y)  z(x-y)  (x-y)(x2-y?) z 7 2(x2-y?)

Taking the first two fractions of (5), we have
dz=dx—dy sothat z—x+y=c
Again, taking the first and third fractions of (5), we have
d(x* —y*)/(x* = y*) = (2/z)dz = 0
Integrating it, we get log(x? — y?) — 2logz = logc,

x2

Y
) =loge; or (x2-yN/zt =,

or log(
From (6) and (8), the required solution is given by
plz—x+y, (x* —y*)/z*] =0
where ¢ is an arbitrary function.
Example 4. Solve cos(x +y)p + sin(x +y) q = z.
Solution. Giventhat cos(x + y)p +sin(x +y)q =z

The Lagrange’s auxiliary equations for (1) are
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(2)
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...(9)

(1)
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dx dy dz

& .2)

cos(x+y) o sin(x+y) Tz

Choosing 1,1,0 as multipliers, each fraction of (2) is equal to

_ dx+dy _ d(x+y) 3
T cos(x+y)+sin(x+y)  cos(x+y)+sin(x+y) ( )
Choosing 1, —1,0 as multipliers, each fraction of (2) is
_ dx—dy _ d(x-y) (4)
" cos(x+y)-sin(x+y) ~ cos(x+y)—sin(x+y)
From the last fractions of (2), (3) and from (4), we get
dz _ d(x+y) _ d(x-y) (5)
z  cos(x+y)+sin(x+y)  cos(x+y)—sin(x+y)
Taking the first two fractions of (5), we have
Z_o 4y ..(6)

z cos(x+y)+sin(x+y)

Puttingx + y =t sothat d(x +y) = dt, (6) reduces to

dz dt dt

z  cost+sint \/E{(%) cos t+(\/%) sin t}

dt _ dt
\/E{sin(%) cos t+cos(%) sin t} T VZsin(t+m/4)

Thus, we have  (V2/z)dz = cosec (t + m/4)dt
Integrating it, we get v2logz = log tan%(t + %) +logc,

t
or zVZ= cltan(5+g) Orzﬁcot(%+§) =c,a t=x+y...(7)
Taking the last two fractions of (5), we have

cos(x+y)—sin(x+y)

dx —y) = d(x+y) ...(8)

cos(x+y)+sin(x+y)
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Putting x + y = t so that d(x + y) = dt, (7) reduces to

cost-sint

dlx—y) = dt sothat x —y =log(sint + cost) —logc,

cost+sint
or (sint+cost)/c, =e*¥ or e~ (sint + cost) =c,
or eY *[sin(x+y)+cos(x+y)]=cyast=x+y ...(9)

From (7) and (9), the required general solution is given by

¢ [zﬁ cot (xzﬂ + g) ,eY*{sin(x + y) + cos(x + y)}] =0...(10)
where ¢ is an arbitrary function.
Example 5. Solve (x3 + 3xy?)p + (v3 + 3x2y)q = 2z(x? + y?).
Solution. Given partial differential equation is
(x3 +3xy)p + (3 + 3x2y)q = 2z(x% + y?) (1)
The Lagrange’s auxiliary equations for (1) are

dx dy dz

x3+3xy? - y3+3x2y - 2z(x2+y?) --(2)
Choosing 1,1,0 as multipliers, each fraction of (2) is
=— dazc+dy2 = d(x+y) ..(3)
x3+3xy2+3x2y+y (x+y)3
Choosing 1, —1,0 as multipliers, each fraction of (2) is
dx—dy _d(x-y) @

- x3+3xy2—y3-3x2y  (x-y)3
From the last fractions of (3) and (4), we get
(x+y)%dx+y) = (x—y)dx—y)

or u3du—v3dv=0,onputtingu=x+yandv=x—y
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Integrating it, we get vei—uTt=¢
or (x—y)?—(x+y)?=c,assu=x+yandv=x—y...(5
Choosing 1/x,1/y, 0 as multipliers, each fraction of (2) is

_ (1/x)dx+(1/y)dy _ (/x)dx+1/y)dy (6)
T @/0x(x3+3xy2)+(1/y)x (3 +3x2y)  4(x2+y?)

Combining the last fraction of (2) with fraction (6), we have

dz _ (1/x)dx+(1/y)dy ax  dy _ ,dz _
22(x24y?)  4(x2+y?) oty a0

Integrating it, we get  logx +logy — 2logz = logc,
or log (Z—Z) =logc, or xy/z*=c, (D
From (5) and (7), the required solution is given by
dlx =) = (x+ )72 (xy)/z°] = 0 .(8)
where ¢ is an arbitrary function.
Example 6. Solve ptq=x+y+z
Solution. Giventhat p+q=x+y+z ..(1)
The Lagrange’s auxiliary equations for (1) are
Eo__Z .2)

1 1 x+y+z
Taking the first two fractions of (2), we get
dx—dy =0  sothat X—y=c¢ ...3)
Choosing 1,1,1 as multipliers, each fraction of (2) is

__ dx+dy+dz _ dQ2+x+y+z)
T 1+14+(x+y+z) | 2+x+y+z

(4
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Combining first fraction of (2) with second fraction of (4), we get
d2+x+y+2)/2+x+y+2z)=dx
Integrating it, we have log(2+x +y +z) —logc, = x
or Q+x+y+z)/c,=e*or Q+x+y+2)e*=c, ...(05
From (3) and (5), the required general solution is given by
Plx—y,2Q+x+y+2)e*]=0 ...(6)
where ¢ is an arbitrary function.

Example 7. Solve the PDE (2x%+y?+2z%—2yz—zx —xy)p +
(x2+2y%2 + 22 —yz—2zx —xy)q = x> + y? + 222 — yz — zx — 2xy.

Solution. Given partial differential equation can be written as
Pp+Qq=R (1)
where P =2x%+y?+z?—2yz— zx — xy,
Q = x?+2y% + z? —yz — 2zx — xy,
and R=x?>+y%+2z% —yz —zx — 2xy

The Lagrange’s auxiliary equations for (1) are

dx d dz . . .
- = Fy =—, which can also be written as given below:
dx _ dy _ dz
2x24y2422-2yz—2X—Xy  X242y2422—yz—22X—Xy  X24+Yy24222—yz—2X—2XY

.2

Choosing 1,—1,0;0,1,—1 and —1,0,1 as multipliers in turn,
each fraction of (2) is equal to

dx—dy _ dy—dz _ dz—dx

T x2-y2—yz+zx  y2-z2-zx+xy  z2-x2-xy+yz
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dx—-dy _ dy—dz _ dz—dx

or (x-y)(x+y+z)  (-2)(x+y+2)  (z-x)(x+y+2)

..(3)

Taking the first two fractions of (3), we have

dx-y) _dy-2) _
(x-y) y-2)

Integrating it, we get log(x —y) —log(y — z) = logc;

or x—-y)/y—2)=¢ . (4)

Taking the last two fractions of (3), we get

diy—z) d(z—x) _ 0
-2)  (z-%)

Integrating it, we get log(y — z) — log(z — x) = logc,

or y—2)/(z—x) =c, ...(5
From (4) and (5), the required general solution is given by
dlx—y)/(y—2),(y—2)/(z—x)] =0 ...(6)

where ¢ is an arbitrary function.

Example 8. Solve the following partial differential equation:

— 21 (92 _ _ .21 (9%\ _ _
fmy(x +y) —nz }(ax) {iIx(x+y) —nz }(ay) = (Ix —my)z
Solution. The given partial differential equation may be written as

my(x +y) —nz?}p — {Ix(x + y) —nz?}q = (lx —my)z ...(1)

The Lagrange’s auxiliary equations for (1) are

dx dy dz

.2

my(x+y)—nz? - —Ix(x+y)+nz?2 - (Ix—-my)z

Taking 1, 1 and 0 as multipliers, each fraction of (2) is
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_ dx+dy _ dx+dy (3)
T omye+y)-lx(x+y)  (my—Ix)(x+y)

Now, from the last fractions of (2) and (3), we have

dx+dy _ dz dix+y) _  dz
(my—1x)(x+y) o —-(my-Ix)z x+y o z

Integrating it, we get log(x +y) = —logz + logc;
or x+y)z=c¢; O xy+yz=c ...(4)

Taking lx, my,nz as multipliers, each fraction of (2) is

Ixdx+mydy+nzdz _ lxdx+mydy+nzdz
Ix my(x+y)—-IlxnzZ-my Ix(x+y)+my nz?2+nz2(Ix—my) - 0

o 2lx dx + 2my dy + 2nzdz = 0 sothat x? + my? + nz? = ¢, ...(5)
From (4) and (5), the required solution is given by
d(xy +yz,Ix* + my? + nz?) =0 ...(6)
where ¢ is an arbitrary function.
EXERCISE 2(D)

Solve the following partial differential equations:

V2 +yz+z0)p+ (2% + zx + x¥)qg = x% + xy + y?
x*’p+y*q=(x+y)z

x(z—2y%) = (z-yq)(z—y* — 2x°)

(x* +y*)p +2xyq = (z+y)
yx+y)+azlp+{x(x +y) —azlqg =z(x +y)

ANSWERS
Lo ) =0 2p(252) =0 3 () o

xX-y x-y

akrwn e
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x+y x+y

y _ 2 2
4o(Fh)=0 s (St -yt - 2ar)
2.10 Surfaces and Normals in Three Dimensions

Let Q be a domain in three-dimensional space R® and let
¢(x,y,z) be a scalar point function, then the vector valued function
grad ¢ may be written as

ap a¢p ¢
gmd¢=v¢=(an55ﬁ (D)

If we assume that the partial derivatives of ¢ do not vanish
simultaneously at any point, then the set of points (x,y,z) in Q,
satisfying the equation

¢(x,y,2) =C ..(2)

is a surface in Q for some constant C. This surface is called a level
or equipotential surface of ¢. If (x,, yo,2,) IS a given point in Q,
then by taking ¢ (xy, vo,2,) = C, we get an equation of the form

qb(x,y,z) = ¢(x0'yO'ZO) (3)

which represents a surface in the domain Q of three dimensional
space passing through the point (x,,y,,2,). Here, equation (2)
represents a one-parameter family of surface in the domain Q. The
value of grad ¢ is a vector, normal to the level surface. Now, one
may ask, if it is possible to solve equation (2) for z in terms of x and
y. To answer this question, let us consider a set of relations of the
form

x=f@v), y=fLuv), z=[fuv) .--(4)

Here, for every pair of values of u and v, we will have three
numbers x, y and z, which represent a point in space. However, it
may be noted that every point in space need not correspond to a pair
(u, v). But if the Jacobian
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a(fl'fZ)

then, the first two equations of (4) can be solved and u and v can be
expressed as functions of x and y like

u=A(x,y)and v = u(x,y) ...(6)

Thus, the third relation of equation (4) gives the value of z in
the form

z :f3[/1(x,)’);li(x'3’)] (7)

This relation is of course, a functional relation between the
co-ordinates x, y and z as in equation (2). Hence, any point (X, vy, z)
obtained from equation (4) always lie on a fixed surface. The set of
equations (4) are called as the parametric equations of a surface.
It may be noted that the parametric equations of a surface need not
be unique, which can be seen in the following example:

The following two sets of parametric equations

x=rsinfcos¢, y=rsinfsing,z=rcosf (setl)

(1-¢%)
1+92)

2
and x—rwcosé?, y=r

. __ 2r¢
=T D) sinf,z=—-  (setll)

1+¢?

represent the same surface x? + y2 + z2 = r2, which is a sphere.

Now, let us take the surface whose equation is of the form

z=f(x7y) ...(8)
The above equation may also be written in the form
p=fxy)—z=0 ...(9)

Differentiating it partially w.r.t. x and y, we obtain
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29, 22z 290z _

= 99
pi e 0 and 3y + 3 ...(10)
. . az__6¢/6x_a_¢>. 99 _
form which on using (9), we get — = 99/37 — ox le,——~=p

9 _ 99 _ 0% _ _
Thus, we have =Py =45, = 1 ...(1D)
Hence, the direction cosines of the normal to the surface at a

point P (x ,y, z) are given by

[4 q -1
(x/p2+q2+1'Jp2+q2+1'Jp2+q2+1) ...(12)

Now, returning to the level surface given by equation (2), it is
easy to write the equation of the tangent plane to the level surface at
a point (x, yo, 2o) @S
oF

+(y_3’o)[£ +(Z_Zo)a_F

OF ]
(x0,Y0:20) 0z (x0,0,20)

=0
0"] (*0,¥0,20)

(x _xo)[

2.11 Curve in Three Dimensions: Intersection of Two Surfaces

A curve in three-dimensional space R® can be described in
terms of parametric equations. Suppose 7 denotes the position
vector of a point on a curve C, then the vector equation of the curve
C may be written as

F=F@) , tel ()

where | is some interval on the real axis. In component form,
equation (1) can be written as

x=fi1(t), y = f2(t), z=f3(¢t) ..(2)
where 7 = (x,y,2) and F(t) = [£,(), £o.(8), f3(O) ].

Further, we assume that
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afi(®) df@®) dfs)
(22,920 2RO) & (0,0,0) e

This non-vanishing vector is called as the tangent vector to
the curve C at the point (x .y, z) or at [f;(t), f2(t), f3(t) ] to the
curve C.

Another way of describing a curve in three-dimensional space
R3 is by using the fact that the intersection of the surfaces gives rise
to a curve.

Let ¢,(x,y,2)=C, and ¢,(x,y,2) =C, ...(4)

are two surfaces. Their intersection, if not empty, is always a curve,
provided grad ¢ and grad ¢» are not collinear at any point of the
domain Q . In other words, the intersection of surfaces given by
equation (4) is a curve if

grad ¢, (x,y,z).grad ¢,(x,y,z) # (0,0,0) ...(5)

for every (x, y, z) € Q. For various values of C1 and C», equation (4)
describes different curves. The totality of these curves is called a
two parameter family of curves. Here, C1 and C; are referred to as
parameters of this family.

2.12 Tangent Line: Intersection of Two Tangent Planes

Let us consider two surfaces denoted by S; and S; whose
equations are given by

F(x,y,z) =0 (D
and G(x,y,z) =0 ...(2)

Then, the equation of the tangent plane m; to the surface S; at
a point P(x,, yo, Zo) is given by

a a 7]
(=) 5o+ (= yo) 5o+ (2= 20) 5 = 0 .3
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OF OF oF .
where 9’3y and S, are all evaluated at the point P (x,, yo, Zo)-

Similarly, the equation of the tangent plane m, to the surface
S at the point P(x,, vo, Zo) IS given by
aG G G
(x—xo)a‘F(y_YO)@‘l'(Z_Zo)E:0 ...(4)

where the partial derivatives Z—Z,z—i and g—z are all evaluated at the
point P (xo, Yo, Zo)-

The intersection of tangent planes is known as the tangent line
at P(x,, Vo, Zo). Thus, the tangent line L to the curve C at the point
P(xy, Yo, Zo) is the intersection of the two surfaces S; and So.

Figure 2.2: Tangent Planes and Tangent Line

The equation of the tangent line L to the curve C at the point
P(xo, vo, Zo) is obtained from (3) and (4), which is given below:
(x=x0) _  (=y0) _ (2=2p)

0F0G 0FAG ~— 0FdG O0FdG ~ 0FOG O0FOG
0yoz 0zdy 0z0x 0x0z 0x0y 0yox

(x=x0) _ (y—y0) _ (z2—2p)
or a(F.G) ~— A(FG ~— OFG . (5)
0(y.2) a(z,x) a(x,y)
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Therefore, the direction cosines of the tangent line L are

: a(F,G) d(F,G) 9(FG)
proportional to [ 350 3en 3y ...(6)

2.13 Integral Surfaces Passing Through a Given Curve

In the previous article, we have obtained general integral of
the partial differential equation Pp + Qq = R.

We shall now present two methods for finding the integral
surface which passes through a given curve

2.13.1 First Method for Finding Integral Surface
Let Pp+Qq =R ..(D)

be the given PDE. Let its Lagrange’s auxiliary equations give us the
following two independent solutions

u(x,y,z) =c; and v(x,y,z) =c, ...(2)

Suppose we wish to obtain the integral surface which passes
through the curve whose equation in parametric form is given by

x=x(t), y=y(t),and z = z(t) ...(3)
where t is a parameter. Then (2) may be expressed as
ulx(©),y(®),z()] = ¢; and v[x(t),y(t),z(t)] = c; (4

We now eliminate the parameter t from the equations of (4)
and get a relation involving c1 and c.. Finally, we replace c; and ¢
with help of (2) and obtain the required integral surface.

2.13.2 Second Method for Finding Integral Surface
Let Pp+Qq =R ..(1)

be the given PDE. Let its Lagrange’s auxiliary equations give us the
following two independent integrals:
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ulx,y,z) =c; and v(x,y,z) =c ...(2)

Suppose we wish to obtain the integral surface passing
through the curve which is determined by the following two
equations:

¢(x,y,2) =0 and Y(x,y,2) =0 ...(3)

We now eliminate x,y and z from the two pairs of equations
of (2) and (3) and obtain a relation between c; and c2. Finally, we
replace c1 by u(x,y,z) and c2 by v(x,y, z) in that relation and we
obtain the desired integral surface.

2.14 Surfaces Orthogonal to a Given System of Surfaces

Let flx,y,2z) =c ..(1)

represents a system or surfaces, where c is a parameter. Suppose we
wish to obtain a system of surfaces which cut each of (1) at right
angles. Then the direction ratios of the normal at the point (x,y, z)

to (1) which passes through that point are —— af af Z .

Let the surface z=¢kx,y) ..(2)

cuts each surface of (1) at right angles. Then the normal at (x, y, z)
to (2) has direction ratios 2—;2—; —1i.e., p,q,—1. Since normals at
P(x,y,z) to (1) and (2) are at right angles, therefore, we have

p(5)+a(s)-(3)=0 or p(§—§)+q(§—§)=(g—§) .(3)
which is of the form Pp + Qq = R, where P = — Q == and R =
ar
oz’

Conversely, we may easily verify that any solution of (3) is
orthogonal to every surface of (1).
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2.15 Geometrical Description of Solutions of Lagrange’s

Equation Pp+Qq =R and Lagrange’s Auxiliary

. d d d
Equations ?x =2-_=

q R
Proof. Consider Pp+Qq=R ..(1)
and & (2)
p @ R

where P, Q and R are functions of x, y and z.

Let z=¢x,y) ...(3)
represents the solution of the Lagrange’s partial differential
equation (1). Then (3) represents a surface whose normal at any
point (x,y, z) has direction ratios z—i,g—;,—l i.e., p,q,—1. Also, we

know that the system of simultaneous equations (2) represent a
family of curves such that the tangent at any point has direction
ratios P, Q, R. Rewriting (1), we have

Pp+Qq+R(-1)=0 ...(4)

which shows that the normal to the surface (3) at any point is
perpendicular to the member of family of curves (2) through that
point. Hence, the member must touch the surface at that point.
Since this holds for each point on (3), therefore, we consider that
the curves (2) lies completely on the surface (3) whose differential
equation is given by (1).

2.16 Geometrical Interpretation of Pp + Qq = R

Here, we show that the surface given by Pp+Qq =R is
orthogonal to the surfaces represented by Pdx + Qdy + Rdz = 0.

We know that the curves whose equations are solutions of

F=_=? (1)
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are orthogonal to the system of the surfaces satisfying
Pdx + Qdy + Rdz =10 ...(2)
Again, the curves of (1) lie completely on the surface

Pp+Qq=R ...(3)

Hence, we conclude that surfaces represented by (2) and (3)
are orthogonal.

SOLVED EXAMPLES

Example 1. Find the tangent vector at the point (0,1,%) to the helix
described by the parametric equations x = cost,y = sint,z = t.
Solution. The tangent vector to the helix at (x, y, z) is given by

(dx dy dz

—, =, )=(—sint,cost,1)
dt’ dt’ dt

We observe that the given point (0,1, g) corresponds to t = ~.
Therefore, the required tangent vector to the helix is given by

(%,Z—Z,%) = (— sing,cosg,l) = (-1,0,1).

Example 2. Find the equation of the tangent line to the space circle

2 2 2 _ _ ; 1 2 _ 3
x*+y*+z°=1x+y+z=0 atthe point (\/ﬁ'\/ﬁ’ m).

Solution. The space circle is described by the functions:
F(x,y,2) =x*+y?>+22-1=0 (D)
and Gx,y,z)=x+y+z=0 ...(2)

The equation of the tangent line at the point (x,, yo, Zo) iS
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(x=x0) _ (y—y0) _ (2—20) 3
d(FG) — 0FG . 9F0G) ( )
32 3z ()
A(F,G) _ OFG _9FG _ ., ., _ 4 6 _ 10
where d(y,z) Oy oz azay y-2z= V14 + Viza V14
O(FG) _0F0G 0F3G 5, o _ _ 6 2 _ _ 8
d(zx)  ozox oxoz N v v AN v
0FG) _ 0F3G _9FG _ 5. _ - 2 4 2
a(x,y) 0xdy 6y ax y= ViZ2 V12 V14
The required equation of the tangent line at the given point
1 2 .
(\/__ T _\/__) is given by
x—1/V14 _ y-2/V14 _ z+3/V14 4)

10/¥14  -8/¥14  -2/V14

Example 3. Find the integral surface of the linear partial differential
equation x(x? + z)p — y(x? + z)q = (x? — y?)z which contains
the straight line x +y =0,z = 1.

Solution. Given x(x? + z)p —y(x?> + z)q = (x? —y?)z ...(1)
The Lagrange’s auxiliary equations of (1) are

d« _  dy _  dz
x(y2+2z) - —y(x2+2) - (x2-y2)z (2)

The two independent solutions of (2) may be obtained as
u(x,y,z) =xyz =¢, ...(3)
and v(x,y,z) =x*+y2—-2z=c, ..(4)

Taking t as parameter, the given equation of the straight line
x+y =0,z =1 can be put in parametric form

X =t, y = —t, z=1 ...(5)
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Using (5) in (3) and (4), we get —t? = ¢, and 2t? -2 =¢, ...(6)
Eliminating t from the equations of (6), we get
2(_C1)_2 ES Cz or 2C1+C2 +2 = 0 (7)

Now, putting the values of c; and ¢ from (3) and (4) in (7),
we get

2xyz+x2+y*—2z2+2=0 ...(8)
which is the desired integral surface of the given PDE.

Example 4. Find the equation of the integral surface of the partial
differential equation 2y(z — 3)p + (2x — z)q = y(2x — 3) which
passes through the circle z = 0, x% + y? = 2x.

Solution. Giventhat 2y(z—-3)p + 2x —z)g = y(2x —3) ...(1)

The Lagrange’s auxiliary equations for (1) are

dx dy dz

2y(z-3) T x-z y(2x-3) "‘(2)
Taking the first and third fractions of (3), we get
2x—=3)dx—2(z—3)dz=0
Integrating it, we get x2 — 3x —z%2 + 6z = ¢, ...(3)

Choosing %,y, —1 as multipliers, each fraction of (2) is

_ (1/2)dx+ydy—dz _ (1/2)dx+ydy—-dz
T y(@z-3)+y(2x—2)-y(2x-3) 0

Hence (1/2)dx +ydy—dz=0o0r dx+ 2ydy —2dz=0

Integrating it, we get x+y:—2z=c, ...(4)
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Thus, the two independent solutions of (2) are given by (3)
and (4).

Now, the parametric equations of given circle are
x=t y=Qt—-t)HY2,z=0 ...(5)
Substituting these values of x, y and z in (3) and (4), we have
t?—3t=c¢, and 3t—-t?®=c, ...(6)
Eliminating t from the equations of (6), we get
ci+c; =0 ..(7)

Substituting the values of c¢; and ¢ from (3) and (4) in (7), the
desired integral surface is given by

x2=-3x—z*+6z+x+y*—2z2=0
or x2+y?—2z2-2x+4z=0 ...(8)

Example 5. Find the integral surface of the partial differential
equation (x —y)p + (y — x — z)q = z passing through the circle
z=1,x*+y2=1.

Solution. Given that x—y)p+W@—x—-2)q=z2 ..(1)

The Lagrange’s auxiliary equations for (1) are

dx dy dz

povie vy ..(2)
Choosing 1,1,1 as multipliers, each fraction of (2) is
_ _dx+dy+dz _ dx+dy+dz
X=y+y—x—z+z 0
dx+dy+dz=0 sothat x+y+z=c ...(3)

Taking the last two fractions of (2) and using (3), we get
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d dz 2d 2dz
4 Z or e

= = 0
y—(c1-y) z 2y—cy z

Integrating it, we get  log(2y — ¢;) — 2logz = logc,

log (2yZ—2c1) =logc, or 2y —cy)/z% =,
or QRQy—-x—y—2)/z=c, or (y—x—2)/z*=c, ...(4)
The equation of the given curve (circle) is
z=1, x2+y?=1 ...(5
Putting z = 1 in (3) and (4), we get
x+y=c¢—1 and y—-x=c,+1 ...(6)
But 2(x%2+y3) =((x+y)?+ (x—y)? ..(7)
Using equations (5) and (6) in (7), we get
2=(c; = 1?4+ (c;+1)% or cZ2+c2—2c,+2c,=0 ...(8)

Putting the values of ¢; and ¢, from (3) and (4) in (8), the
required integral surface is given by

x+y+2)°2+(@y—-x—2)?%/z*—(x+y+2)
+2(y—x—2)/z2=0
or z'(x+y+2)?+(y—x—2)>?
—2z*(x+y+2)+2z22(y—x—2)=0

Example 6. Find the equation of integral surface satisfying 4yzp +
q + 2y = 0 and passing through y2 + z2 = 1,x + z = 2.

Solution. Given that 4yzp + q = =2y ..(1)

The equation of the given curve is
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yi+z2=1, x+z=2 .2
The Lagrange’s auxiliary equations for (1) are

2= .3

4yz 1 -2y
Taking the first and third fractions of (3), we have
dx + 2zdz =0 sothat x +z%2 = ¢, (4
Taking the last two fractions of (3), we have
dz+2ydy =0 sothat z+y?>=c, ...(5
Adding (4) and (5), weget (v2+z3)+ (x+2) =c¢; + ¢,
or 14+2=c¢ +c,,using(2) ...(6)

Putting the values of c1 and c2 from (4) and (5) in (6), the
equation of the required integral surface is given by

3=x+2z>+z+y?> o y: +z2+x+z-3=0

Example 7. Find the surface which intersects the surfaces of the
system z(x +y) =c(3z+ 1) orthogonally and which passes
through the circle x? + y2 =1,z = 1.

Solution. The equation of the given system of surfaces is

fxy,z) =20 ¢ (1)

3z+1

a_f_ z a_f_ z a_f [(32+1) 32]( n )_ x+y
dx 3z+1’ 8y 3z+1 ' 0z (3z+1)2 (3z+1)2

The required orthogonal surface will be the solution of

0 a a z z x+
L) ) P, 2a _ _x+y
ax ay 0z 3z4+41  3z+1 (3z+1)2
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or

or

zB3z+1)q+zBz+1)g=x+y ...(2)
The Lagrange’s auxiliary equations for (2) are

dx dy dz

z(3z+1) = z(3z+1) = x+y +(3)
Taking the first two fractions of (3), we get dx —dy = 0
Integrating it, we get X—y=c¢ ...(4)

Taking x,y, —z(3z + 1) as multipliers, each fraction of (3) is
= [xdx + ydy — z(3z + 1)dz]/0
xdx + ydy — 3z%dz — zdz = 0
2xdx + 2ydy — 6z*dz — 2zdz = 0
Integrating it, we get x2+y?—-223-2z2=¢, ..(5
Hence, the surface which is orthogonal to (1) is given by

x2+y?—-222-2z2=¢p(x—y) ...(6)

where ¢ is an arbitrary function.

In order to get the desired surface passing through the circle

x%2+y%? =1,z =1, we must choose ¢p(x —y) = —2.

Thus, the required particular surface is given by

x2+y?—2z3—27z2=-2

Example 8. Write down the system of equations for obtaining the
general equation of surfaces orthogonal to the family given by
x(x? 4+ y? + z%) = cy?.

Solution. The equation of the given family of surface is
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flx,v,z) =x(x*+y*+z3)/y*=c ..(1)

The surfaces orthogonal to the system (1) are the surfaces
generated by the integral curves of the equations

dx _dy 9z o0 dx __ dy
of 7 of T 9f (3x2+y2+2z2)/y2  —2x(x2+z2)/y3  2x/y?z
dx ady 0z
dx _ dy _ az
or y(3x2+y2+z2)  —2x(x2+z2)  2xyz (2)
Taking x, y, z as multipliers, each fraction of (2) is
_ xdx+ydy+zdz _ xdx+ydy+zdz (3)

T xy(3x?+y2+4z2)-2x(x2+22)+2xyz  xy(x2+y2+22)
Combining this fraction (3) with the last fraction of (2), we get

xdx+ydy+zdz _ dz or 2xdx+2ydy+2zdz _ dz
xy(x2+y2+2z2)  2xyz x2+y2+4z72 Tz

Integrating it, we get log(x? + y? + z%) = logz + log ¢,
or x2+y?’+z2=ciz or (xX*+y? +2z%)/z=c; ...(4)
Taking 4x, 2y, 0 as multipliers, each fraction of (2) is

4xax+2ydy __ 4xd+2ydy
4xy(3x2+y2+22)—4xy(x2+y2)  4xy(2x2+y2)

..(5)

Combining this fraction (5) with the last fraction of (2), we get

dxdx+2ydy  dz or dxdx+2ydy _ 2dz
4xy(2x2+y2)  2xyz 2x2+y2  z

Integrating it, we get  log(2x? + y?) = 2logz + logc,
or 2x% + y? = cyz? or 2x? +y?)/z% = ¢, ...(6)

From (4) and (6), the required general equation of the surfaces
which are orthogonal to the given family of surfaces (1) is given by
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(x* +y? +29)/z = p[(2x* + y*)/2°]
where ¢ is an arbitrary function.

Example 9. Find the surface which is orthogonal to the one
parameter system z = cxy(x? + y?) which passes through the
hyperbola x2 — y? = a?z = 0.

Solution. The equation of given system of surfaces is

flx,y,z) =z/(x3y + xy3) =c ..(1)
of _  z(3x*y+y3) ar _  z(3y*x+x®) of _ 1
ax  (By+xy®)?2 'ay  (x3y+xy3)? ‘9z x3y+xy3

The required orthogonal surface will be the solution of
or
p(G)+
or  {Bx*+y?)/xlp +{By* +x*)/ylqg = -(x* +y*)/z ..(2)

The Lagrange’s auxiliary equations for (2) are

(af) __of o z(3x2y+y3) z(3y%x+x3) 1
ay) ~ oz (x3y+xy3)2 (3y+xy3)2 T 7 x3y+xy3

dx dy dz

Gx2ryD/x Gy’ 4Dy —(P4y?)z ()
Taking the first two fractions of (3), we have
2xdx —2ydy =0 sothat x*—y?=¢ (4

Choosing x, y, 4z as multipliers, each fraction of (3) is
= (xdx + ydy + 4zdz) /0
o 2xdx + 2ydy +8zdz =0 sothat x2+y?+4z2=c,...(5
Hence, the surface which is orthogonal to (1) is given by

x2+y%+4z% = p(x? —y?) ...(6)
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For the particular surface passing through the given hyperbola
x? —y? =a? z = 0, we must take

p(x? —y?) = a’(x* + y*) /(x* — y?)? (7
Hence, the required surface is given by
(x2 + Y2 + 422)%(x% — y2)? = a*(x2 + y?) ...(8)

Example 10. Find the family orthogonal to ¢[z(x + y)?,x? — y?] = 0.

Solution. Given that Plz(x +y)4,x2—y?] =0 ..(1)
Let u=z(kx+y)? and v=x%-y? .. (2)
Then (1) becomes ¢(u,v) =0 ...(3)

Differentiating (3) w.r.t. x and y partially, we get

G rnGrrg) =0 @
and T W T

From (2), we get Z—Z =2z(x+y), g—;‘ =2z(x+y),

P —ox, =2y, =

6u_ 2 ov ov
aZ—(x+y), ax dy dz

Putting these values in (4) and (5), we get

(32) 1220 + y) + pCx + y)21 + (32) 2x +0) =0 ...(6)

and (22) 2zCx +y) + qGe + )71 +(2) =2y +0) =0 ...(7)

Evaluating the values of Z—Z/g—f from (6) and (7) and then
equating these, we get
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/ 2x _ —2y
T 22 py)? | 22Gty) )’

or  x(x+y)2z+qix+y)]=—-ylx+y)2z+pkx+y)l

or 2xz+qx(x+y)+2yz+py(x+y)=0

or py(x+y)+qgx(x+y) =—-2z(x+y)

or py +qx = =2z ...(8)

which is a partial differential equation of the family of surfaces
given by ().

The differential equation of the family of surfaces orthogonal
to (8) is given by

ydx + xdy —2zdz =0 or d(xy)—2zdz=0 ...(9)
Integrating (9), we get xy—z?>=c ...(10)
which is the desired family of orthogonal surfaces.
EXERCISE 2(E)

1. Find particular integrals of the following partial differential
equations to represent surfaces passing through the given curves:

)p+q=1x=0,y2=z
ixp+yq=z;x+y=1yz=1

(i) y—2)p+(z—x)q=x—y;z=0,z =2x
Vx(y-2p+viz-x)qg=z&x—-yhx=yx=y—z
(V) yp — 2xyq = 2xa;x = t,y = t?,z = t?

(Vi) o —2D[2xyp + (x> = y)ql + z(x*> —y?) = 0;x = t%,y = 0,z = ¢°
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2. Find the general solution of the partial differential equation
2x(y+z)p + 2y + z%)q = z*> and deduce that yz(z% + yz —
2y) = x?% is a solution.

3. Find the general solution of the partial differential equation
x(z + 2ap) + (xz + 2yz + 2ay)q = z(z+a). Find also the
integral surfaces which pass through the curves:

)y =0,z2°=4ax i)y = 0,23 +x(z+a)? =0

4. Solve xp +yq ==z. Find a solution representing a surface
meeting the parabola y? = 4x,z = 1.

ANSWERS
i y—-x)?=z—x (i) yz = (x +y)*
(iii) 5(x+y +2)> =9(x2 +y2 + z%)(iv) (x + y + 2)3 = 27xyz
(V) (x2 + y?)3 = 32y2z2 (vi) x3 — 3xy? = z%2 — 2yz
4. General Solution: ¢ (gg) = 0, Required Surface: y? = 4xz

2.17 Linear Partial Differential Equations of Order One with n
Independent Variables

Let x5, X5, X3,0nnn... , X, be the n independent variables and z
be a dependent function depending on x4, x5, X3, ......... , X
0z 0z 0z 0z
AlSO, let P1 = a_xl'pz = a—xz,pg = a—xg,...., Pn = E

Then, the general linear partial differential equation of order
one with n independent variables is given by

P1p1+P2p2+P3p3+...+Pnpn:R ...(1)
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The above partial differential equation (1) can be solved by
the generalization of Lagrange’s method. Therefore, the system of
Lagrange’s auxiliary equations is given by

ﬁ_dxz_dxg_ _dxn_g (2)

Py p, P3 Py R

Let wuy(xq, %5, X3,...,%0, Z) = Cq1, Up(Xq, X3, X3,...,X0, Z) = C3,
U3 (X1, X3, X300y X0, Z) = C3,enry Up(Xq, X, X3,..., Xp, Z) = C, DE ANY
n independent integrals of (2).

Then, the general solution of (1) is given by
d(ug, Uy, Us, e e, Uy) =0 ...(3)
SOLVED EXAMPLES
Example 1. Solve x,x3p; + X3x102 + X1 X053 = X1 XX3.

Solution. The given equation is a linear partial differential equation
with three independent variables x;, x, and x; and z as a dependent
function depending on x,, x, and x;.

Comparing the given partial differential equation with P;p; +
P,p, + P3ps+...+P,p, = R, we have

P1 = X3X3, PZ = X3Xq, P3 = X1X2 and R = X1Xp2X3
=~ The system of Lagrange’s auxiliary equations is given by

dxy _ dx, _ dxz _ dz dxq dx, dxs dz (1)

= = = r =

P1 P2 P3 R X2X3  X3X1  X1Xz  XqXpX3
Taking the first and the second fractions of (1), we get
x2  x2
xldxl = dexZ SO that ? = ? + ?

whichgives x? —x?=c¢;, or u, =xi—-x3=¢ .. (2
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Taking the second and the third fractions of (1), we get

x2  x%2 o
xzde = .X3dx3 SO that ? = 7 + ?
which give x5 —x3=c, or U, = x5 —x23=c¢c, ...(3)

Again, taking the third and fourth fractions of (1), we get

2
dz = x3dx; sothat z =x73+%3

which gives 2z —x2=¢; of u3=2z—x3=c3 ..(4)

Finally, from (2), (3) and (4), the general solution of the given
partial differential equation is

d(x? —x2,x2 —x2,2z—x2)=0 ..(5)

Example 2. Solve P;p; + P,p, + Psps = az + %

3
Solution: The given equation is a linear partial differential equation
with three independent variables x;,x,,x; and z as a dependent
function depending on x,, x, and x;.

Comparing the given partial differential equation with P;p; +
Pzpz + P3p3+ = R, we have
X1X2

P1=x1,P2=x2, P3:x3andR:aZ+x_.
3

~ The system of Lagrange’s auxiliary equations is given by

dxq dx, dxs dz dxq dx, dxs dz
g T _ B8 _ 22 o — == == — ..(D)
Py Py P3 R X1 X2 X3 az+?

Taking the first and the second fractions of (1), we have
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L9 - 22 g that logx; =logx, +logc;
X1 X2
X - X
x_:: Cl l.e. u1 :x—:: Cl (2)

Taking the second and the third fractions of (1), we have

22— D5 o that log x, = logx; + logc,
X2 X3
X2 _ - _ x_2 —
= =2 .e. U = =G ...(3)

Again, taking the first and fourth fractions of (1), we have

dxq dz dz . X2
= X1X2 = y Slnce —_ = C2
X1 az+T az+cyxq X3
az+cyx dz . dz a
or e o2 e, ——(—)z=c2 (4
X1 dxq dxq X1

which is a linear differential equation whose integrating function
(I.LF.) is given as follows :

[
x1 = eg~alogxy — xl—a

ILF.of (4)= e *

=~ The solution of the linear differential equation (4) is given by

1-a

— — - X
zx7% =c, [x7%dxy + ¢35 oOr lea:cz(ll_a)+c3

1-a
-a _ X2 i X
or ZX " = i + c3, since from (2), ¢, -

1-a 1—-a
i_(x1 )ﬁ:C:g ie u3 :xz_a_(xl_)ﬁ:C:g ...(5)
1

x% 1-a/ x3 1-a/ x5

Finally, from (2), (3) and (5), the general solution of the given
partial differential equation is
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R T

EXERCISE 2(F)

Solve the following partial differential equations:

X1P1 + X2P2 + X3P3 = X1X2X3.

(X3 = X2)P1 + X2P2 — X3p3 = X (%1 + Xx3) — X5

P1 — X1D2 + X1 %P3 + X1 X,%37z = 0.

(X2 + x5+ 2)py + (x5 + x4 + 2)p2 + (1 + x5 + 2)p3
=x1 +x; + x3.

Moo E

ANSWERS

) (x—z s X1X3X3 — 32) =0

xyx3’
O(z — x1x5, %1 + Xp + x3,X3%3) =0
(22, + x2,2x3 + %2, 4z +x3) = 0
d{u(z — x),u(z — x,),u(z — x3)} = 0, where u is given
by u = (z+ x; + x, + x3)/3

Eal A

OBJECTIVE TYPE QUESTIONS
1. The PDE Pp + Qq = R is popularly known as
(a) Lagrange’s equation (b) Euler’s equation
(c) Monge’s equation (d) Leibnitz equation

2. Lagrange’s auxiliary equations for xzp + yzq = xy are

dx _dy _dz
@_-=—=— (b)7=7y=7

dx d dz
©—=—== (d);=7y=7
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3. The integral surface satisfying 4yzp + q + 2y = 0 and passing
throughy? +z2 =1,x+z=21is

@y*+z2+x+z-3=0 O y*+z2+x+z=0
©y*+z2+y+z—-3=0 (dy? +z24+y+z=0

4. The solution of the PDE xzp + yzq = xy is

@ ¢ (5xy—22) =0 (b) p(x? xy) = 0
() p(x*y,xy) =0 (d) p(xy,z +x?y) =0
ANSWERS

1.(a) 2. (a) 3. (a) 4. (a)



